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Algebraicity modulo p of generalized hypergeometric series nFn−1

Daniel vargas-Montoya

Abstract. Let f(z) = nFn−1(α,β) be the hypergeometric series with parameters α =
(α1, . . . , αn) and β = (β1, . . . , βn−1, 1) in (Q ∩ (0, 1])n, let dα,β be the least common
multiple of the denominators of α1, . . . , αn, β1, . . . , βn−1 written in lowest form and let
p be a prime number such that p does not divide dα,β and f(z) ∈ Z(p)[[z]]. Recently
in [11], it was shown that if for all i, j ∈ {1, . . . , n}, αi − βj /∈ Z then the reduction of
f(z) modulo p is algebraic over Fp(z). A standard way to measure the complexity of an
algebraic power series is to estimate its degree and its height. In this work, we prove that
if p > 2dα,β then there is a nonzero polynomial Pp(Y ) ∈ Fp(z)[Y ] having degree at most

p2
nϕ(dα,β) and height at most 5n(n+1)!p2

nϕ(dα,β) such that Pp(f(z) mod p) = 0, where
ϕ is the Euler’s totient function. Furthermore, our method of proof provides us a way to
make an explicit construction of the polynomial Pp(Y ). We illustrate this construction
by applying it to some explicit hypergeometric series.

Contents

1. Introduction 2

2. Examples 5

3. Proof of Theorem 1.3 8

4. Proof of Theorem 3.2 11

5. Proof of Proposition 4.2 14

6. Proof of Proposition 4.1 16

7. Proof of Lemma 6.1 19

8. Proof of Lemma 6.2 24

9. Constructing the polynomial Pp(Y ) 38

Bibliography 44

(1) — Daniel Vargas-Montoya, Institute of Mathematics of the Polish Academy of Sciences,
Śniadeckich 8, 00-656 Warsaw, Poland — Email address: devargasmontoya@impan.pl

This work was supported by the National Science Centre of Poland (NCN), grant UMO-
2020/39/B/ST1/00940.

http://arxiv.org/abs/2204.13504v3


DANIEL VARGAS-MONTOYA

1. Introduction

Let α = (α1, . . . , αn) and β = (β1, . . . , βn−1, 1) be in (Q \Z60)
n. The generalized hyper-

geometric series with parameters α, β is the power series given by

nFn−1(α,β; z) =
∑

i>0

Qα,β(i)z
i ∈ Q[[z]] with Qα,β(i) =

(α1)i · · · (αn)i
(β1)i · · · (βn−1)ii!

,

where for a real number x and a nonnegative integer i, (x)i is the Pochhammer symbol, that

is, (x)0 = 1 and (x)i = x(x+1) · · · (x+ i−1) for i > 0. We denote by dα,β the least common

multiple of the denominators of α1, . . . , αn and β1, . . . , βn−1 written in lowest form. It is

well-known that nFn−1(α,β; z) is a solution of the hypergeometric operator

H(α,β) =
n
∏

i=1

(δ + βi − 1)− z
n
∏

i=1

(δ + αi), with δ = z
d

dz
.

We recall that for any field K, the power series h(z) ∈ K[[z]] is an algebraic power series

over K(z) if there exists a nonzero polynomial P (Y ) ∈ K(z)[Y ] such that P (h(z)) = 0.

Given a prime number p, we denote by Z(p) the localization of Z at ideal (p). That is, Z(p)

is the set of rational numbers a/b written in lowest form such that p does not divide b. This

ring is a local ring whose maximal ideal is (p)Z(p) and its residue field is the field with p

elements, which is denoted by Fp. Given a power series f(z) =
∑

i>0 a(i) ∈ Z(p)[[z]], the

reduction of f modulo p is f(z) mod p :=
∑

i>0(a(i) mod p)zi ∈ Fp[[z]]. The power series

f(z) is said to be algebraic modulo p if f(z) mod p is an algebraic power series over Fp(z).

A usual way to measure the complexity of an algebraic power series is to estimate its degree

and its height.

Definition 1.1. — Let K be a field and let a(z) = s(z)/t(z) be in K(z) written in lowest

form. The height of a(z) is equal to max{deg(s(z)), deg(t(z))}. Let P (Y ) =
∑m

i=0 ai(z)Y
i

be in K(z)[Y ] such that am(z) is not zero. The degree of P is m and the height of P is the

maximum of the heights of a0(z), . . . , am(z).

We have shown in [11, Theorem 1.2] the following result. Let S be an infinite set of

prime numbers p such that p does not divide dα,β and nFn−1(α,β; z) ∈ Z(p)[[z]]. We proved

that if, for all i, j ∈ {1, . . . , n}, αi − βj /∈ Z then, for all p ∈ S, nFn−1(α,β; z) is algebraic

modulo p. We also established that nFn−1(α,β; z) mod p has degree at most pn
2ϕ(dα,β),

where ϕ is the Euler’s totient function. However, the result obtained in [11] does not offer

any information about the height. The main result of this work shows that if α and β

belong to (Q∩ (0, 1])n then, for all p ∈ S satisfying p > 2dα,β, there is a nonzero polynomial

Pp(Y ) ∈ Fp(z)[Y ] having degree at most p2
tl and height at most 5t(t + 1)!p2

tl such that

Pp(nFn−1(α,β; z) mod p) = 0, where t 6 n and l is the order of p in (Z/dα,βZ)
∗. Further, the

advantage of the present method is that it gives an explicit way to construct the polynomial

Pp(Y ).
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ALGEBRAICITY MODULO P OF GENERALIZED HYPERGEOMETRIC SERIES nFn−1

1.1. Main result

In order to state our main result, Theorem 1.3, we have to introduce some notations.

Let p be a prime number such that p does not divide dα,β. Then H(α,β) ∈ Z(p)[z][δ].

In particular, we can reduce H(α,β) modulo p and we denote by H(α,β, p) its reduction

modulo p. That is,

H(α,β, p) :=

n
∏

i=1

(δ + (βi − 1) mod p)− z

n
∏

i=1

(δ + αi mod p) ∈ Fp[z][δ].

An element of the set {0, 1− β1 mod p, . . . , 1 − βn−1 mod p} will be called an exponent at

zero of H(α,β, p). Consider the following set:

Eα,β,p = {r ∈ {0, 1, . . . , p− 1} : r mod p is an exponent at zero of H(α,β, p)}.

Given a finite set E, by #E we mean the number of elements of E. It is clear that 0 ∈ Eα,β,p

and that #Eα,β,p 6 n. As usual, vp : Q → Z denotes the p-adic valuation map. We define

the following set:

Sα,β,p = {r ∈ {0, 1, . . . , p− 1} : r ∈ Eα,β,p and vp (Qα,β(r)) = 0}.

The set Sα,β,p is not empty because 0 ∈ Sα,β,p, and #Sα,β,p 6 n since Sα,β,p ⊂ Eα,β,p.

Let us recall the definition of the map Dp : Z(p) → Z(p) introduced by Dwork in [9,

Chap. 8]. The map Dp : Z(p) → Z(p) is such that, for every γ in Z(p), Dp(γ) is the unique

element in Z(p) such that pDp(γ) − γ belongs to {0, . . . , p− 1}. In [9, Chap. 8] this map is

denoted by γ 7→ γ′. For γ = (γ1, . . . , γn) ∈ Zn
(p) we write Dp(γ) for (Dp(γ1), . . . ,Dp(γn)).

For all integers m > 1, Dm
p is the m-th composition of Dp with itself and D0

p is identity map

on Z(p).

Remark 1.2. — Let α = (α1, . . . , αn) and β = (β1, . . . , βn−1, 1) be in Qn and let

p a prime number such that p does not divide dα,β. Then, α and β belong to Zn
(p) and

for this reason, for all integers m > 0, the differential operator H(Dm
p (α),Dm

p (β)) belongs

to Z(p)[z][δ]. Thus, for all integers m > 0, the sets EDm
p (α),Dm

p (β),p, SDm
p (α),Dm

p (β),p are

well-defined.

We are now ready to state our main result:

Theorem 1.3. — Let α = (α1, . . . , αn) and β = (β1, . . . , βn−1, 1) be in (Q∩ (0, 1])n, let

f(z) be the hypergeometric series nFn−1(α,β; z), let p be prime number such that p > 2dα,β

and f(z) ∈ Z(p)[[z]], and let (Z/dα,βZ)
∗ be the unit group of Z/dα,βZ. Suppose that, for all

i, j ∈ {1, . . . , n}, αi − βj /∈ Z. Then there is a nonzero polynomial Pp(Y ) ∈ Fp(z)[Y ] having

degree at most p2
nϕ(dα,β) and height at most 5n(n+1)!p2

nϕ(dα,β) such that Pp(f(z) mod p) =

0. Moreover, if l is the order of p in (Z/dα,βZ)
∗ then the following assertions hold:

(1) if 1 = #S
D

l−1
p (α),Dl−1

p (β),p then

Pp(Y ) = Y −Q1(z)Y
pl

,

where Q1(z) belongs to Fp[z] and has degree less than pl;

– 3 –
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(2) if 2 = #S
D

l−1
p (α),Dl−1

p (β),p then

Pp(Y ) = Y −Q1(z)Y
pl

−Q2(z)Y
p2l

,

and the height of Pp(Y ) is less than 2p2l;

(3) if 2 < #S
D

l−1
p (α),Dl−1

p (β),p = t+ 1 then

Pp(Y ) = Y −Q1(z)Y
pl

−Q2(z)Y
p2l

−Q3(z)Y
p3l

− · · · −Q2t(z)Y
p2tl

,

and the height of Pp(Y ) is less than 5t(t+ 1)!p2
tl.

Let us make a few comments. In these comments we keep the notations used in the

statement of Theorem 1.3.

• To prove Theorem 1.3 it is sufficient to show that the assertions (1), (2) and (3) hold

because l 6 ϕ(dα,β) = #(Z/dα,βZ)
∗ and #S

D
l−1
p (α),Dl−1

p (β),p 6 n.

• The method of proof of Theorem 1.3 provides us a way to make an explicit con-

struction of the polynomial Pp(Y ) ∈ Fp(z)[Y ]. In Section 9, we show how to construct the

polynomial Pp(Y ) and we illustrate this construction by applying it to some hypergeometric

series.

• The conclusion of the assertion (1) of Theorem 1.3 is to equivalent to saying that the

hypergeometric series nFn−1(α,β, z) satisfies the pl-Lucas property. We say that a power

series f(z) =
∑

i>0 a(i)z
i ∈ Q[[z]] satisfies the pl-Lucas property if f(z) ∈ Z(p)[[z]], a(0) = 1

and, for all integers m > 0 and for all r ∈ {0, . . . , pl − 1}, a(mpl + r) ≡ a(m)a(r) mod p.

From [2, Proposition 4.8], it follows that f(z) ∈ 1+ zZ(p)[[z]] satisfies the pl-Lucas property

if and only if f ≡ Ap(z)f
pl

mod p, where Ap is a polynomial with coefficients in Z(p) having

degree less than pl.

• As we have already said, from Theorem 1.2 of [11] it follows that nFn−1(α,β; z) is

algebraic modulo p and the degree of its reduction modulo p is at most pn
2ϕ(dα,β). The proof

of this result relies on the fact that H(α,β) has a strong Frobenius structure for all p ∈ S

with period ϕ(dα,β). Nevertheless, the approach used in this work to prove Theorem 1.3

does not use the existence of strong Frobenius structure.(1)

• In Section 2 we will compare through some hypergeometric series the estimate p2
tl

given by Theorem 1.3 and the estimate pn
2ϕ(dα,β) given by Theorem 1.2 of [11]. As we

will see, for these particular examples, the estimate p2
tl is much finer than the estimate

pn
2ϕ(dα,β).

1.2. Structure of proof

The proof of Theorem 1.3 is based on Theorem 3.2. The latter one is derived from

Propositions 4.1 and 4.2. In section 5, Proposition 4.2 is proved. Proposition 4.1 will be

(1) The existence of strong Frobenius structure of H(α,β) is a directly consequence of a result due to
Crew [7]. The approach used by Crew is via p-adic cohomology. Nevertheless, we also obtain this result in
[11, Theorem 6.2] by using an elementary approach based on ideas of Christol [5] and Saliner [10].

– 4 –
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proved in Section 6 and its proof relies on Lemmas 6.1 and 6.2. The proof of Lemma 6.1 is

given in Section 7. Finally, in Section 8 we prove Lemma 6.2. Nevertheless, the proof of this

lemma depends on Lemma 8.1, which is also proved in Section 8. Lemma 8.1 is, in fact, the

main ingredient of this work and its proof is based essentially on two facts. The first one

deals with some p-adic properties of the sequence {Qα,β(j)}j>0. Sections 8.2 and 8.4 are

devoted to studying these p-adic properties. The second fact is the equality

I(j)Qα,β(j) = Qα,β(j − 1)T (j − 1) (1.1)

for all integers j > 1, where I(j) =
∏n

i=1(j + βi − 1) and T (j) =
∏n

i=1(j + αi). The

Equality (1.1) is equivalent to the fact that nFn−1(α,β; z) is solution of H(α,β).

1.3. Reduction modulo p of generalized hypergeometric series

In oder to apply Theorem 1.3, a natural question is to determine when it is possible

to reduce a hypergeometric series modulo p. In this direction, an interesting class of hy-

pergeometric series is the class of globally bounded hypergeometric series. We say that the

hypergeometric series nFn−1(α,β; z) is globally bounded if there is c ∈ Q \ {0} such that

nFn−1(α,β; cz) belongs to Z[[z]]. Consequently, a globally bounded hypergeometric series

can be reduced modulo p for almost every prime number p. As an example, the hyper-

geometric series g(z) := 3F2(α,β; z) with parameters α = (19 ,
4
9 ,

5
9 ) and β = (13 , 1, 1) is

globally bounded because g(272z) ∈ Z[[z]]. In [6], Christol has given a characterization of

the hypergeometric series that are globally bounded. For more exemples of globally bounded

hypergeometric series we refer the reader to [1, 4].

In addition, there are also many generalized hypergeometric series that are not globally

bounded but, for infinitely many prime numbers p, they can be reduced modulo p. For

example, f(z) = 2F1(α,β; z) with α = (13 ,
1
2 ) and β = ( 5

12 , 1) is not globally bounded but

thanks to Proposition 24 of [8], for all primes p ≡ 1 mod 12, f(z) ∈ Z(p)[[z]].

2. Examples

The aim of this section is to illustrate Theorem 1.3 by applying it to the hypergeometric

series f(z) and g(z). In order to proceed, we need some results which will also be useful in

the rest of the paper.

Lemma 2.1. — Let γ = a
b be in Q ∩ (0, 1] written in lowest form and let p be a prime

number such vp(γ) = 0. If pl ≡ 1 mod b then Dl
p(γ) = γ.

Proof. — Since γ ∈ Z(p), we have

γ =
∑

s>0

jsp
s,

– 5 –



DANIEL VARGAS-MONTOYA

where, for all s, js ∈ {0, . . . , p− 1}. Note that j0 6= 0 because vp(γ) = 0. First, we are going

to show by induction on n ∈ N>0 that

Dn
p (γ) = 1 +

∑

s>n

jsp
s−n.

It is clear that, p
(

1 +
∑

s>1 jsp
s−1
)

− γ = p− j0. Then, Dp(γ) = 1 +
∑

s>1 jsp
s−1 because

p− j0 ∈ {1, . . . , p− 1}. Now, suppose that Dn
p (γ) = 1 +

∑

s>n jsp
s−n. It is clear that

p



1 +
∑

s>n+1

jsp
s−n−1



−



1 +
∑

s>n

jsp
s−n



 = p− jn − 1.

As p− jn − 1 ∈ {0, . . . , p− 1} and, by induction hypothesis, Dn
p (γ) = 1+

∑

s>n jsp
s−n then

Dn+1
p (γ) = 1 +

∑

s>n+1 jsp
s−n−1.

Thus, for all integers n > 1 ,

Dn
p (γ) = 1 +

∑

s>n

jsp
s−n.

In particular for the integer l, we have

plDl
p(γ)− γ = pl



1 +
∑

s>l

jsp
s−l



−
∑

s>0

jsp
s

= pl −
l−1
∑

s=0

jsp
s.

As j0 ∈ {1, . . . , p − 1} and for all s > 1, js ∈ {0, . . . , p − 1}, then pl −
∑l−1

s=0 jsp
s ∈

{1, . . . , pl − 1}. Hence, plDl
p(γ)− γ ∈ {1, . . . , pl − 1}.

We now prove that plγ − γ ∈ {1, . . . , pl − 1}. Indeed, as pl ≡ 1 mod b then pl = 1 + bk.

So, plγ = γ + ak. We also have a 6 b because by assumption γ ∈ (0, 1]. Thus, ak 6 bk and

as bk = pl − 1 then ak 6 pl − 1. Therefore, plγ − γ ∈ {1, . . . , pl − 1}.

So that plDl
p(γ)− γ and plγ − γ belong to {1, . . . , pl − 1}. Without losing any generality

we can assume that plDl
p(γ) − γ > plγ − γ. Then, plDl

p(γ) − plγ = pl(Dl
p(γ) − γ) belongs

to {0, 1 . . . , pl − 1}. We write Dl
p(γ) − γ = c

d ∈ Z(p) where c and d are positive co-prime

integers. Hence, plc = dt with t ∈ {0, 1 . . . , pl − 1}. We assume for contradiction that c
d 6= 0.

As p does not divide d, then pl divides t. This is a clear contradiction of the fact that t

belongs to {0, 1 . . . , pl − 1}. Consequently, c
d = 0, that is, Dl

p(γ)− γ = 0.

�

Lemma 2.2. — Let p be a prime number and γ be in Z(p). We put s := pDp(γ)− γ. If

vp(Dp(γ)) = 0 then, for every r ∈ {0, 1, . . . , p− 1}, we have

vp((γ)r) =







0 if r 6 s

1 if r > s.

– 6 –
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Proof. — By definition of the map Dp, s is the unique integer in {0, . . . , p− 1} such that

γ + s ∈ pZ(p). For this reason, vp((γ) · · · (γ + s − 1)(γ + s + 1) · · · (γ + p − 1)) = 0. So, if

r 6 s, vp((γ)r) = 0 and if r > s, vp((γ)r) = vp(pDp(γ)) = 1 + vp(Dp(γ)) = 1 because by

assumption, vp(Dp(γ)) = 0. �

Example 2.3. — Consider the hypergeometric series f(z) := 2F1(α,β; z), with α =

(13 ,
1
2 ) and β = ( 5

12 , 1). In this case dα,β = 12. Let S be the set of prime numbers p such that

p > 24 and p ≡ 1 mod 12. So, by applying Proposition 24 of [8], we conclude that, for every

p ∈ S, f(z) ∈ Z(p)[[z]]. From Theorem 1.2 of [11], we get that, for every p ∈ S, f(z) mod p

has degree at most p16. Actually, we will see that, by applying Theorem 1.3, f(z) mod p has

degree at most p2 for all p ∈ S. Let p be in S. Then, p = 1+ 12k with k > 1. We first prove

that Sα,β,p = {0, 1+ 5k}. It is nor hard to see that Eα,β,p = {0, 1+ 5k} and it is clear that

0 ∈ Sα,β,p. As p ≡ 1 mod 12 and vp(α) = (0, 0) = vp(β) then, from Lemma 2.1, we obtain

Dp(α) = α and Dp(β) = β. Thus, we obtain the following equalities:

4k = pDp(1/3)− 1/3, 6k = pDp(1/2)− 1/2, and 5k = pDp(5/12)− 5/12.

So, from Lemma 2.2, we obtain

vp((1/3)1+5k) = 1, vp((1/2)1+5k) = 0, and vp((5/12)1+5k) = 1.

It is clear that vp((1)1+5k) = 0. Therefore,

vp

(

(1/3)1+5k(1/2)1+5k

(5/12)1+5k(1)1+5k

)

= 0.

Whence, 1 + 5k ∈ Sα,β,p. Consequently, #Sα,β,p = 2. Then, it follows from (2) of Theo-

rem 1.3 that there are Q1,p(z), Q2,p(z) ∈ Q(z) ∩ Z(p)[[z]][z
−1] such that

f ≡ Q1,p(z)f
p +Q2,p(z)f

p2

mod p (2.1)

and the heights of Q1,p(z) mod p and Q2,p(z) mod p are less than 2p2.

Example 2.4. — Consider the hypergeometric series g(z) := 3F2(α,β; z), with α =

(19 ,
4
9 ,

5
9 ) and β = (13 , 1, 1). In this case dα,β = 9. It turns out that g(272z) ∈ Z[[z]]. So

that, for every prime number p 6= 3, g(z) belongs to Z(p)[[z]]. From Theorem 1.2 of [11], we

get that, for all primes p 6= 3, g(z) mod p has degree at most p54. Nevertheless, by applying

Theorem 1.3, we obtain for some prime numbers p a finer estimate than p54. Let S be the set

of prime numbers p such that p > 18 and p ≡ 8 mod 9. Then, for every p ∈ S, p2 ≡ 1 mod 9.

We are going to see that, for every p ∈ S, #SDp(α),Dp(β),p = 2. Let p be in S. We put

α′ = (8/9, 5/9, 4/9) and β′ = (2/3, 1, 1). As p ≡ 8 mod 9 then p = 8 + 9k with k > 1 and

we also have the following equalities:

7 + 8k = p(8/9)− 1/9 4 + 5k = p(5/9)− 4/9

3 + 4k = p(4/9)− 5/9 5 + 6k = p(2/3)− 1/3.

So that, Dp(α) = α′ and Dp(β) = β′. Thus, EDp(α),Dp(β),p = {0, 3 + 3kp}. Furthermore,

since p2 ≡ 1 mod 9 and vp(α) = (0, 0, 0) = vp(β), by Lemma 2.1, we obtain D2
p(α) = α

– 7 –
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and D2
p(β) = β. Therefore, Dp(α

′) = α and Dp(β
′) = β and consequently, we obtain the

following equalities:

k = p(1/9)− (8/9) 3 + 4k = p(4/9)− (5/9)

4 + 5k = p(5/9)− (4/9) 2 + 3k = p(1/3)− 2/3.

So, it follows from Lemma 2.2 that

vp((8/9)3+3k) = 1, vp((5/9)3+3k) = 0, vp((4/9)3+3k) = 0, and vp((2/3)3+3k) = 1.

It is clear that vp((1)3+3k) = 0. Therefore,

vp

(

(8/9)3+3k(5/9)3+3k(4/9)3+3k

(2/3)3+3k(1)23+3k

)

= 0.

Whence, 3 + 3kp ∈ SDp(α),Dp(β),p. And, it is clear that 0 ∈ SDp(α),Dp(β),p.

Consequently, #SDp(α),Dp(β),p = 2. Then, it follows from (2) of Theorem 1.3 that, for

every prime p ∈ S, there are A1,p(z), A2,p(z) ∈ Q(z) ∩ Z(p)[[z]][z
−1] such that

g ≡ A1,p(z)g
p2

+A2,p(z)g
p4

mod p (2.2)

and the heights of A1,p(z) mod p and A2,p(z) mod p are less than 2p4.

Remark 2.5. — An explicit formula for each rational function appearing in Equation

(2.1) can be obtained from Theorem 9.2. Further, Theorem 9.4 gives an explicit formula for

each rational function appearing in Equation (2.2).

3. Proof of Theorem 1.3

The proof of Theorem 1.3 is based on Theorem 3.2 and Proposition 3.3, which are stated

below. In order to formulate Theorem 3.2, we have to define the Pp,l property. We denote

by Z∗
(p) the set of units of Z(p). As we have already said, the ring Z(p) is a local ring and its

maximal ideal is (p)Z(p). So, γ ∈ Z∗
(p) if and only if γ /∈ (p)Z(p) if and only if vp(γ) = 0.

Definition 3.1. — Let p be a prime number and let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1)

be in (Z(p))
n and let l > 1 be an integer. We say that (α, β) satisfies the Pp,l property, if,

for every k ∈ {1, . . . , l}, we have:

(P1) Dk
p(α) and Dk

p(β) belong to (Z∗
(p) ∩ (0, 1])n,

(P2) Dk
p(αi)−Dk

p(βj) belongs to Z∗
(p) for 1 6 i, j 6 n,

(P3) Dk
p(βj)−Dk

p(βs) belongs to Z∗
(p) if and only if βj 6= βs,

(P4) p− 1 /∈ I
(k+1)
β , where I

(k+1)
β = {pDk+1

p (βj)−Dk
p(βj) : 1 6 j 6 n and βj 6= 1}.

(P5) For every, i, j ∈ {1, . . . , n}, 1−Dk
p(βj) +Dk

p(αi) ∈ Z∗
(p) and 1−Dk

p(βj) +Dk
p(βi) ∈

Z∗
(p).

We are now ready to state Theorem 3.2.
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Theorem 3.2. — Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q∩ (0, 1])n and let

p be a prime number such that f(z) := nFn−1(α,β; z) belongs to Z(p)[[z]]. Suppose that (α,β)

satisfies the Pp,l property, where l is the order of p in (Z/dα,βZ)
∗. If, for all i, j ∈ {1, . . . , n},

αi and βj belong to Z∗
(p) then the assertions (1), (2), and (3) of Theorem 1.3 hold.

The next proposition deals with some properties of the map Dp.

Proposition 3.3. — Let γ = a/b and τ = c/d be in Q ∩ (0, 1] written in lowest form

and let p be a prime number such that γ, τ ∈ Z(p). Then:

(1) Dp(γ) = y/b ∈ Q ∩ (0, 1], where y ∈ {1, . . . , b} and py ≡ a mod b. Moreover, y and

b are co-prime,

(2) Dp(γ) = Dp(τ) if and only if γ = τ ,

(3) if p > b, Dp(γ) ∈ Z∗
(p).

Proof. — (1). By definition of Dp, it follows that pDp(γ) = γ+ s with s ∈ {0, . . . , p− 1}.

So, γ + s = (a + sb)/b ∈ (p)Z(p). Thus, y := (a + sb)/p ∈ N. So, Dp(γ) = y/b and

py ≡ a mod b. Assume for contradiction that y = 0. Then, Dp(γ) = 0 and a ∈ (b)Z. But, by

hypotheses, 0 < a/b 6 1. Thus, a = b and so, γ = 1. But, Dp(1) = 1. Whence, 0 = 1, which

is a contradiction. Thus, y > 0. We now prove that y ∈ {1, . . . , b − 1, b}. Since γ ∈ (0, 1]

and s 6 p − 1, it follows that γ + s 6 p. As γ + s = (a + bs)/b then (a + bs)/b 6 p.

Thus, y = (a+ bs)/p 6 b. Consequently, y ∈ {1, . . . , b− 1, b}. Therefore, Dp(γ) ∈ Q ∩ (0, 1].

Finally, we show that y and b are co-prime. As py ≡ a mod b and, by assumption, a and b

are co-prime then y and b are co-prime.

(2). It is clear that if γ = τ then Dp(γ) = Dp(τ). We now prove that if Dp(γ) = Dp(τ)

then γ = τ . From (1), we know that Dp(γ) = y/b ∈ Q ∩ (0, 1], where y ∈ {1, . . . , b} and

py ≡ a mod b and Dp(τ) = x/d ∈ Q ∩ (0, 1], where x ∈ {1, . . . , d} and px ≡ c mod d.

First, we suppose that γ = 1. So, 1 = Dp(γ) = y/b. In particular, y = b. By assumption,

Dp(γ) = Dp(τ). Then, 1 = Dp(τ) and x = d. Thus, pd ≡ c mod d. Whence, c ∈ (d)Z. But,

by hypotheses, 0 < c/d 6 1. For this reason, c = d. Therefore, τ = 1. Now, we suppose that

γ < 1. Assume for contradiction that Dp(γ) = 1. Then, y = b and pb ≡ a mod b. Whence,

a ∈ (b)Z. Since 0 < a/b 6 1, we have a = b. Therefore, γ = 1, which is a contradiction.

Consequently, Dp(γ) < 1. By assumption, Dp(γ) = Dp(τ). Then, Dp(τ) < 1. From (1),

we know that Dp(γ) = y/b where y ∈ {1, . . . , b} and Dp(τ) = x/d, where x ∈ {1, . . . , d}.

Actually, we have y ∈ {1, . . . , b − 1} and x ∈ {1, . . . , d− 1} because 0 < y/b, x/d < 1. But,

y/b = x/d because Dp(γ) = Dp(τ). As y, b are co-prime and x, d are co-prime then the

equality y/b = x/d implies y = x and b = d. In particular, we have py ≡ a mod b and

py ≡ c mod b. So, a − c ∈ (b)Z. As γ = a/b < 1, τ = c/d 6 1, and d = b then |a − c| < b.

But, a− c ∈ (b)Z. Thus, a = c. So, γ = τ .

(3). According to (1), Dp(γ) = y/b, where y ∈ {1, . . . , b} and y and b are co-prime. Since

p > b, we have p > y. In particular, p does not divide y and thus, y/b ∈ Z∗
(p).

�

By assuming Theorem 3.2, we can now prove Theorem 1.3.
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Proof of Theorem 1.3. — Let p > 2dα,β be a prime number. Then αi, βj ∈ Z(p) for all

1 6 i, j 6 n given that p > dα,β and αi, βj ∈ (0, 1] for all 1 6 i, j 6 n. We first prove that

the following two conditions are satisfied.

a) For every integer m > 0, Dm
p (αi)−Dm

p (βj) /∈ Z for all 1 6 i, j 6 n.

b) For every integer m > 0, Dm
p (βj)−Dm

p (βs) /∈ Z if and only if βj 6= βs.

By hypotheses, we know that, for all i, j ∈ {1, . . . , n}, αi − βj /∈ Z. That is equivalent

to saying that, αi 6= βj because, for all i, j ∈ {1, . . . , n}, αi, βj belong to (0, 1]. Thus, it

follows from (2) of Proposition 3.3 that, for all integers m > 0, Dm
p (αi) 6= Dm

p (βj). Thus,

Dm
p (αi) − Dm

p (βj) /∈ Z because, for all integers m > 0, Dm
p (αi), D

m
p (βj) belong to (0, 1].

Therefore, the condition (a) is satisfied. Following the same argument, one shows that the

condition (b) is also satisfied.

We now prove that (α,β) satisfies the Pp,m property for all integers m > 1. To this end,

we set

• U1 = {Dm
p (αi),D

m
p (βj)}m>1,16i,j6n.

As p > dα,β and αi, βj ∈ (0, 1] for all 1 6 i, j 6 n then αi, βj ∈ Z∗
(p) for all 1 6 i, j 6 n.

Then, it follows from (1) and (3) of Proposition 3.3 that U1 ⊂ Z∗
(p) ∩ (0, 1].

Now, we consider the following set,

• U2 = {Dm
p (αi)−Dm

p (βj)}m>1,16i,j6n.

We have 0 /∈ U2 because, by condition a), we know that, for every m > 1, Dm
p (αi)−Dm

p (βj) /∈

Z for all 1 6 i, j 6 n. Now, we prove that for any 1 6 i, j 6 n, Dm
p (αi) −Dm

p (βj) belongs

to Z∗
(p). Indeed, let i, j be in {1, . . . , n} and let us write αi = a/b and βj = c/d in lowest

form. Then, from (1) of Proposition 3.3, we get Dm
p (αi) = y/b and Dm

p (βj) = y′/d, where

0 < y 6 b, 0 < y′ 6 d and y, b are co-prime and y′, d are co-prime. So, Dm
p (αi)−Dm

p (βj) =

(yd − y′b)/bd and |yd − y′b| < bd. As p > dα,β then p > bd and thus, p > |yd − y′b|. So,

Dm
p (αi)−Dm

p (βj) belongs to Z∗
(p). Thus, U2 ⊂ Z∗

(p).

We also consider the following set,

• U3 = {Dm
p (βj)−Dm

p (βs) : 1 6 j, s 6 n, βj 6= βs}m>1.

We have 0 /∈ U3 because, by condition b), we know that, for every m > 1, Dm
p (βj)−Dm

p (βs) /∈

Z if and only if βj 6= βs. Following the same argument as in U2, one gets U3 ⊂ Z∗
(p).

We have the following set,

• U4 = {1−Dm
p (βj) : 1 6 j 6 n, βj 6= 1}m>1.

Assume for contradiction that 0 ∈ U4. Then 1 = Dm
p (βj) for somme j ∈ {1, . . . , n} with

βj 6= 1. As Dm
p (1) = 1 = Dm

p (βj) then, according to (2) of Proposition 3.3, βj = 1, which is a

contradiction. Therefore, 0 /∈ U4. Following the same argument as in U2, one gets U4 ⊂ Z∗
(p).

• U5 = {1−Dm
p (βj) +Dm

p (αi), 1 −Dm
p (βt) +Dm

p (βs)}m>1,16i,j,t,s6n.
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We have 0 /∈ U5 because, from (1) of Proposition 3.3, for every m > 1, Dm
p (α) and Dm

p (β)

belong to ((0, 1] ∩ Q)n. We now prove that U5 ⊂ Z∗
(p). Indeed, let i, j be in {1, . . . , n} and

let us write αi = a/b and βj = c/d in lowest form. Then, from (1) of Proposition 3.3, we get

Dm
p (αi) = y/a and Dm

p (βj) = y′/d, where 0 < y 6 b, 0 < y′ 6 d and y, b are co-prime and

y′, d are co-prime. So, 1−Dm
p (βj) +Dm

p (αi) = (bd− y′b+ yd)/bd and |bd− y′b+ yd| < 2bd.

As p > 2dα,β then p > 2bd and thus, p > |bd− y′b+ yd|. So, 1−Dm
p (βj) +Dm

p (αi) ∈ Z∗
(p).

In a similar way, one shows that, for any 1 6 m, s 6 n, 1−Dm
p (βt) +Dm

p (βs) ∈ Z∗
(p).

We now see that (α,β) satisfies the Pp,m property. The condition (P1) is satisfied because

U1 ⊂ Z∗
(p)∩(0, 1]. Now, since U2 ⊂ Z∗

(p), the condition (P2) is satisfied. The condition (P3) is

also satisfied because U3 ⊂ Z∗
(p). Assume now for contradiction that p− 1 ∈ I

(k+1)
β for some

k ∈ {1, . . . , l}. Then, p− 1 = pDk+1
p (βj)−Dk

p(βj) for βj 6= 1. So that, 1−Dk
p(βj) ∈ pZ(p).

But, 1 − Dk
p(βj) ∈ Z∗

(p) because 1 − Dk
p(βj) ∈ U4. So, we obtain a contradiction. Thus,

for all k ∈ {1, . . . , l}, p − 1 /∈ I
(k+1)
β . Whence, the condition (P4) is satisfied. Finally, the

condition (P5) is satisfied since U5 ⊂ Z∗
(p). Hence, (α,β) satisfies the Pp,m property for all

integers m > 1. In particular, (α,β) satisfies the Pp,l property, where l is the order of p in

(Z/dα,βZ)
∗.

We have already seen that, for all i, j ∈ {1, . . . , n}, αi and βj belong to Z∗
(p). Consequently,

by applying Theorem 3.2, the assertions (1), (2), and (3) hold, which completes the proof.

�

Remark 3.4. — Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q ∩ (0, 1])n, p >

2dα,β be a prime number. Then, it follows from the proof of Theorem 1.3 that (α,β) satisfies

the Pp,m property for all integers m > 1.

4. Proof of Theorem 3.2

Theorem 3.2 is derived from Propositions 4.1 and 4.2. In order to state Proposition 4.1,

we need to introduce two more sets and some notations. Let p be a prime number. For

γ = (γ1, . . . , γn) ∈ Zn
(p) and r ∈ Z>0, we consider the following two sets:

Pγ,r = {s ∈ {1, . . . , n} : (γs)r ∈ pZ(p)} and Cγ,r = {s ∈ {1, . . . , n} : (γs)r /∈ pZ(p)}.

Note that Cγ,r is the complement of Pγ,r in {1, . . . , n} and that Cγ,0 = {1, . . . , n}.

Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q \ Z60)
n and let p be a prime

number such that α and β belong to Zn
(p). Then, for every integer a > 1 and for every

r ∈ {0, . . . , p − 1}, we set αa,r = (α1,a,r, . . . , . . . , αn,a,r) and βa,r = (β1,a,r, . . . , . . . , βn,a,r),

where, for every s ∈ {1, . . . , n},

αs,a,r =











Da
p(αs) if s ∈ C

D
a−1
p (α),r

Da
p(αs) + 1 if s ∈ P

D
a−1
p (α),r,
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βs,a,r =











Da
p(βs) if s ∈ C

D
a−1
p (β),r

Da
p(βs) + 1 if s ∈ P

D
a−1
p (β),r.

Note that, for every a > 1 and r ∈ {0, . . . , p − 1}, βn,a,r = 1 because n ∈ C
D

a−1
p (β),r and

Da
p(1) = 1. So, it makes sense to consider the hypergeometric series nFn−1(αa,r,βa,r; z). We

let fa,r denote the hypergeometric series nFn−1(αa,r,βa,r; z). Thus,

fa,r =
∑

m>0









∏

s∈C
D

a−1
p (α),r

(Da
p(αs))m

∏

s∈P
D

a−1
p (α),r

(Da
p(αs) + 1)m

∏

s∈C
D

a−1
p (β),r

(Da
p(βs))m

∏

s∈P
D

a−1
p (β),r

(Da
p(βs) + 1)m









zm.

Proposition 4.1. — Let the assumptions be as in Theorem 3.2. Then, for every r ∈

S
D

l−1
p (α),Dl−1

p (β),p, fl,r ∈ 1 + zZ(p)[[z]] and

fl,r ≡
∑

j∈S
D

l−1
p (α),D

l−1
p (β),p

Qr,j(z)f
pl

l,j mod p,

where, for every j ∈ S
D

l−1
p (α),Dl−1

p (β),p, Qr,j(z) belongs to Z(p)[z] and has degree less than

pl.

Proposition 4.2. — Let g0, g1, . . . , gt−r be in Fp[[z]] different from zero and let l be a

positive integer. Suppose that, for every i ∈ {0, . . . , t− r},

gi =

s
∑

k=1

Pi,kg
pkl

0 +

t−r
∑

k=1

Ai,kg
psl

k ,

where, for all i ∈ {0, . . . , t−r}, Pi,1, . . . , Pi,s, Ai,1, . . . Ai,t−r belong to Fp(z) and their heights

are less than cpsl. If A0,t−r is not zero then, for every i ∈ {0, . . . , t− r − 1},

gi =

2s
∑

k=1

Ti,kg
pkl

0 +

t−r−1
∑

k=1

Di,kg
p2sl

k ,

where, for all i ∈ {0, . . . , t−r−1}, Ti,1, . . . , Ti,2s, Di,1, . . .Di,t−r−1 belong to Fp(z) and their

heights are less than 5c(t− r + 1)p2sl.

By assuming Propositions 4.1 and 4.2, we are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. — Note that fl,0 is the hypergeometric series nFn−1(α,β; z)

because, by assumption α,β belong to (Z∗
(p)∩(0, 1])n and thus, Lemma 2.1 implies Dl

p(α) =

α and Dl
p(β) = β.

1). If #S
D

l−1
p (α),Dl−1

p (β),p = 1 then, by Proposition 4.1, we have

fl,0(z) ≡ Q0,0f
pl

l,0 mod p,

where Q0,0 is a polynomial with coefficients in Z(p) whose degree is less than pl.
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2). Suppose that #S
D

l−1
p (α),Dl−1

p (β),p = 2. Let us write S
D

l−1
p (α),Dl−1

p (β),p = {r0, r1} with

r0 = 0. Then, by Proposition 4.1, we have

fl,0 ≡ Q0,0f
pl

l,0 +Q0,1f
pl

l,r1
mod p, (4.1)

fl,r1 ≡ Q1,0f
pl

l,0 +Q1,1f
pl

l,r1
mod p, (4.2)

where Q0,0(z), Q0,1(z), Q1,0(z) and Q1,1(z) belong to Z(p)[z] and their degrees are less than

pl.

If Q0,1(z) mod p is the zero polynomial then, from (4.1), we have fl,0 ≡ Q0,0f
pl

l,0 mod p.

Now, suppose that Q0,1(z) mod p is not the zero polynomial. From Equations (4.1) and

(4.2), we have

Q0,1fl,r1 −Q1,1fl,0 ≡ (Q0,1Q1,0 −Q1,1Q0,0)f
pl

l,0 mod p.

Since Q0,1(z) mod p is not the zero polynomial, it follows from the previous equality that

fl,r1 ≡
Q0,1Q1,0 −Q1,1Q0,0

Q0,1
fpl

l,0 +
Q1,1

Q0,1
fl,0 mod p.

As the characteristic of Fp is p, then

fpl

l,r1
≡

(

Q0,1Q1,0 −Q1,1Q0,0

Q0,1

)pl

fp2l

l,0 +

(

Q1,1

Q0,1

)pl

fpl

l,0 mod p.

By replacing the previous equality into (4.1), we obtain

fl,0 ≡ Q0,0f
pl

l,0 +Q0,1

(

(

Q0,1Q1,0 −Q1,1Q0,0

Q0,1

)pl

fp2l

l,0 +

(

Q1,1

Q0,1

)pl

fpl

l,0

)

mod p

≡

(

Q0,0 +Q0,1

(

Q1,1

Q0,1

)pl)

fpl

l,0 +Q0,1

(

Q0,1Q1,0 −Q1,1Q0,0

Q0,1

)pl

fp2l

l,0 mod p.

Since the degrees of Q0,0, Q0,1, Q1,0 and Q1,1 are less than or equal to pl − 1, we conclude

that the height of Q0,0 + Q0,1

(

Q1,1

Q0,1

)pl

is less than p2l and that the height of the rational

function Q0,1

(

Q0,1Q1,0−Q1,1Q0,0

Q0,1

)pl

is less than 2p2l.

3). Suppose thta t+1 = #S
D

l−1
p (α),Dl−1

p (β),p with t > 1. Let us write S
D

l−1
p (α),Dl−1

p (β),p =

{r0, r1, . . . , rt} with r0 = 0. Then, by Proposition 4.1, we have for all i ∈ {0, . . . , t},

fl,ri ≡ Qi,0f
pl

l,0 +

t
∑

j=1

Qi,j(z)f
pl

l,rj
mod p, (4.3)

where, for every j ∈ {0, . . . , t}, Qi,j(z) is a polynomial with coefficients in Z(p) whose degree

is less than pl.

If, for every j ∈ {1, . . . , t}, Q0,j(z) mod p is the zero polynomial then, it follows from

(4.3) that fl,0 ≡ Q0,0(z)f
pl

l,0 mod p. Now, suppose that there is j ∈ {1, . . . , t} such that

Q0,j mod p is not the zero polynomial. Without losing any generality we can assume that
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Q0,t mod p is not the zero polynomial. Then, by applying Proposition 4.2 to (4.3), it follows

that, for all i ∈ {0, . . . , t− 1},

fl,ri ≡
2
∑

k=1

Ti,k,2f
pkl

l,0 +

t−1
∑

k=1

Di,k,2f
p2l

l,rk
mod p, (4.4)

where, Ti,1,2, Ti,2,2, Di,1,2, . . .Di,t−1,2 belong to Q(z) ∩ Z(p)[[z]][z
−1] and their heights are

less than 5(t+ 1)p2l.

Now, if for all k ∈ {1, . . . , t − 1}, D0,k,2 mod p = 0 then, fl,0 ≡ P1f
pl

l,0 + P2f
p2l

l,0 mod p,

where P1 = T0,1,2 and P2 = T0,2,2.

Now, suppose that there is k ∈ {1, . . . , t − 1} such that D0,k,2 mod p is not the zero

polynomial. Without losing any generality we can assume that D0,t−1,2 mod p is not the zero

polynomial. Then, by applying Proposition 4.2 to (4.4), we infer that, for all i ∈ {0, . . . , t−2},

fl,ri ≡
4
∑

k=1

Ti,k,3f
pkl

l,0 +
t−2
∑

k=1

Di,k,3f
p4l

l,rk
mod p, (4.5)

where, Ti,1,3, . . . , Ti,4,3, Di,1,3, . . .Di,t−2,3 belong to Q(z) ∩ Z(p)[[z]][z
−1] and their heights

are less than 52(t+ 1)tp4l.

After making the previous process t-times we deduce that,

fl,0 ≡ Q1f
pl

l,0 +Q2f
p2l

l,0 + · · ·+Q2tf
p2tl

l,0 mod p,

where, for every i ∈ {1, . . . , t}, Qi belongs to Q(z)∩Z(p)[[z]][z
−1] and the height of Qi mod p

is less than 5t(t+ 1)!p2
tl.

�

5. Proof of Proposition 4.2

Proof. — By hypotheses, for every i ∈ {0, . . . , t− r}, we have

gi =

s
∑

k=1

Pi,kg
pkl

0 +

t−r
∑

k=1

Ai,kg
psl

k . (5.1)

Then, for every i ∈ {1, . . . , t− r},

A0,t−rgi −Ai,t−rg0 =

s
∑

k=1

(A0,t−rPi,k −Ai,t−rP0,k)g
pkl

0 +

t−r−1
∑

k=1

(A0,t−rAi,k −Ai,t−rA0,k)g
psl

k .

By assumption, A0,t−r is not zero. Then, it follows from the last equality that, for every

i ∈ {1, . . . , t− r},

gi =

s
∑

k=1

Qi,kg
pkl

0 +

t−r−1
∑

k=1

Bi,kg
psl

k + Cig0,
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where,

Qi,k =
A0,t−rPi,k −Ai,t−rP0,k

A0,t−r
, Bi,k =

A0,t−rAi,k −Ai,t−rA0,k

A0,t−r
, and Ci =

Ai,t−r

A0,t−r
.

As the characteristic of Fp is p then, for every i ∈ {1, . . . , t− r},

gp
sl

i =

s
∑

k=1

Qpsl

i,kg
p(s+k)l

0 +

t−r−1
∑

k=1

Bpsl

i,k g
p2sl

k + Cpsl

i gp
sl

0 .

By substituting this last equality into (5.1), for every i ∈ {0, . . . , t− r − 1}, we get

gi =

s−1
∑

k=1

Pi,kg
pkl

0 +

(

Pi,s +

t−r
∑

k=1

Ai,kC
psl

k

)

gp
sl

0 +

s
∑

k=1





t−r
∑

j=1

Ai,jQ
psl

j,k



 gp
(s+k)l

0

+

t−r−1
∑

k=1





t−r
∑

j=1

Ai,jB
psl

j,k



 gp
2sl

k .

For every k ∈ {1, . . . , s − 1}, we set Ti,k = Pi,k, for k = s, we set Ti,s = Pi,s +
∑t−r

k=1 Ai,kC
psl

k , for every k ∈ {s + 1, . . . , 2s}, we set Ti,k =
∑t−r

j=1 Ai,jQ
psl

j,k−s, and fi-

nally for every k ∈ {1, . . . , t − r − 1}, we set Di,k =
∑t−r

j=1 Ai,jB
psl

j,k . So that, for every

i ∈ {0, . . . , t− r − 1}, we have

gi =

2s
∑

k=1

Ti,kg
pkl

0 +

t−r−1
∑

k=1

Di,kg
p2sl

k .

Finally, we are going to see that, for all i ∈ {0, . . . , t− r − 1}, the heights of Ti,1, . . . , Ti,2s,

Di,1, . . .Di,t−r−1 are less than 5c(t − r + 1)p2sl. In fact, if k ∈ {1, . . . , s − 1} then, Ti,k =

Pi,k. By hypotheses, the height of Pi,k is less than cpsl. So, if k ∈ {1, . . . , s − 1} then the

height of Ti,k is less than cpsl. By definition, Ti,s = Pi,s +
∑t−r

k=1 Ai,kC
psl

k . Recall that,

for every k ∈ {1, . . . , t − r − 1}, Ck =
Ak,t−r

A0,t−r
. Thus, the height of Ck is less than 2cpsl

because, by hypotheses, the heights of Ak,t−r and A0,t−r are less than cpsl. So, for every

k ∈ {1, . . . , t− r− 1}, the height of Cpsl

k is less than 2cp2sl. Again, by hypotheses, the height

of Ai,k is cpsl. Thus, the height of Ai,kC
psl

k is less than 3cp2sl. Thus, the height of Ti,s is

less than 3c(t− r + 1)p2sl. Now, we prove that, for every k ∈ {s+ 1, . . . , 2s}, the height of

Ti,k is less than 5c(t− r)p2sl. By definition, Ti,k =
∑t−r

j=1 Ai,jQ
psl

j,k−s. The height of Qj,k−s is

less than 4cpsl because, Qj,k−s = Pj,k−s − (Aj,t−rP0,k−s)
/

(A0,t−r) and by hypotheses, the

heights of A0,t−r, Aj,t−r, Pj,k−s, P0,k−s are less that cpsl. Thus, the height of Qpsl

j,k−s is less

than 4cp2sl. So, the height of Ai,jQ
psl

j,k−s is less than 5cp2sl. Whence, the height of Ti,k is

less than 5c(t− r)p2sl. Similarly, it follows that, for every k ∈ {1, . . . , t− r − 1}, the height

of Di,k is 5c(t− r)p2sl. This completes the proof of our proposition.

�
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6. Proof of Proposition 4.1

The proof of Proposition 4.1 relies on Lemmas 6.1 and 6.2.

Lemma 6.1. — Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q \ Z60)
n and let p

be a prime number such that p does not divide dα,β. Suppose that (α,β) satisfies the Pp,l

property. Then:

A) for every (a, r) ∈ {1, . . . , l}×{0, . . . , p−1}, the map σ : Sαa,r ,βa,r,p → SDa
p(α),Da

p(β),p

given by

σ(t) =











t if t ≡ 1−Da
p(βs) mod p with s ∈ C

D
a−1
p (β),r

t+ 1 if t ≡ −Da
p(βs) mod p with s ∈ P

D
a−1
p (β),r

is well-defined and is bijective. Moreover, its inverse τ : SDa
p(α),Da

p(β),p → Sαa,r,βa,r ,p

is given by

τ(t) =











t if t ≡ 1−Da
p(βs) mod p with s ∈ C

D
a−1
p (β),r

t− 1 if t ≡ 1−Da
p(βs) mod p with s ∈ P

D
a−1
p (β),r;

B) for every (a, r) ∈ {1, . . . , l} × {0, . . . , p− 1}, the following equalities hold for every

t ∈ Sαa,r ,βa,r,p, Pαa,r ,t = PDa
p(α),σ(t), Cαa,r ,t = CDa

p(α),σ(t), Pβa,r,t = PDa
p(β),σ(t),

and Cβa,r,t = CDa
p(β),σ(t).

Lemma 6.2. — Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q \ Z60)
n, let p be

a prime number such that p > dα,β and f(z) := nFn−1(α,β; z) belongs to Z(p)[[z]]. Suppose

that (α,β) satisfies the Pp,l property, where l is the order of p in (Z/dα,βZ)
∗. Then, for

every a ∈ {1, . . . , l} and for every r ∈ S
D

a−1
p (α),Da−1

p (β),p, fa,r ∈ 1 + zZ(p)[[z]] and

f ≡
∑

r∈S
D

a−1
p (α),D

a−1
p (β),p

Qa,r(z)f
pa

a,r mod p,

where, for every r ∈ S
D

a−1
p (α),Da−1

p (β),p, Qa,r(z) belongs to Z(p)[z] and has degree less than

pa.

Section 7 is devoted to proving Lemma 6.1 and Lemma 6.2 will be proved in Section 8.

The following remarks are useful in the proofs of Proposition 4.1 and Lemmas 6.2 and 9.1.

Remark 6.3. —

(1) If γ ∈ Z∗
(p) then Dp(γ + 1) = Dp(γ). Indeed, pDp(γ) − γ belongs to {1, . . . , p− 1}

because γ ∈ Z∗
(p). Whence, pDp(γ)−γ−1 belongs to {0, . . . , p−1}. So, Dp(γ+1) =

Dp(γ).

(2) Let p be a prime number and let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in

(Z(p))
n. Suppose that (α, β) satisfies the Pp,l property. In this remark we show that,

for all (a, r) ∈ {1, . . . , l− 1} × {0, . . . , p− 1}, Dp(αa,r) = Da+1
p (α) and Dp(βa,r) =

Da+1
p (β). As (α,β) satisfies the Pp,l property and a ∈ {1, . . . , l − 1} then, from

– 16 –



ALGEBRAICITY MODULO P OF GENERALIZED HYPERGEOMETRIC SERIES nFn−1

(P1), we know that Da
p(α), Da

p(β), belong to (Z∗
(p))

n. Let w be in {1, . . . , n}. If

w ∈ C
D

a−1
p (α),r then αw,a,r = Da

p(αw). Thus, Dp(αw,a,r) = Da+1
p (αw). Now, if w ∈

P
D

a−1
p (α),r then αw,a,r = Da

p(αw) + 1. Hence, by (1), Dp(D
a
p(αw) + 1) = Da+1

p (αw)

because Da
p(αw) belongs to Z∗

(p). Therefore, Dp(αa,r) = Da+1
p (α). In a similar

fashion, it follows that Dp(βa,r) = Da+1
p (β).

Remark 6.4. —

Let p be a prime number and let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Z(p))
n.

Suppose that (α, β) satisfies the Pp,l property. The goal of this remark is to show that,

for all (a, r) ∈ {1, . . . , l − 1} × {0, . . . , p− 1}, (αa,r,βa,r) satisfies the Pp,l′ property, where

l′ is the order of p in (Z/dαa,r ,βa,r
Z)∗. For this purpose, we will first show that, for any

1 6 k 6 l, there is 1 6 s 6 l such that Dk
p(αa,r) = Ds

p(α) and Dk
p(βa,r) = Ds

p(β). From

(2) of Remark 6.3, we have Dp(αa,r) = Da+1
p (α) and Dp(βa,r) = Da+1

p (β). Consequently,

for all k ∈ {1, . . . , l}, we get Dk
p(αa,r) = Da+k

p (α) and Dk
p(βa,r) = Da+k

p (β). Let k be in

{1, . . . , l} and let us write a+ k = s+ tl with 0 6 s < l. We have pl = 1 mod dDk
p(α),Dk

p(β)

because, from the definition of Dp, it follows that dDk
p(α),Dk

p(β) divides dα,β.(2) Further,

from (P1) we have Dk
p(α), Dk

p(β) ∈ Z∗
(p) ∩ (0, 1]. Then, by Lemma 2.1, we get that, for

all m > 1, Dml
p (Dk

p(α)) = Dk
p(α) and Dml

p (Dk
p(β)) = Dk

p(β). So, Dk
p(αa,r) = Ds

p(α) if

s 6= 0 and if s = 0, we have Dk
p(αa,r) = Dtl

p (α) = D
(t−1)l
p (Dl

p(α)) = Dl
p(α). Similarly, we

have Dk
p(βa,r) = Ds

p(β) if s 6= 0 and Dk
p(βa,r) = Dl

p(β) if s = 0. Consequently, (αa,r,βa,r)

satisfies the Pp,l property. Finally, from the definition of Dp again, it immediately follows

that dαa,r ,βa,r
divides dα,β. Hence, if l′ is the order of p in (Z/dαa,r ,βa,r

Z)∗ then l′ divides

l and therefore, l′ 6 l. So, (αa,r,βa,r) satisfies the Pp,l′ property.

Remark 6.5. — Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q ∩ (0, 1])n and

let p be a prime number such that α, β belong to (Z∗
(p))

n and let l be the order of p in

(Z/dα,βZ)
∗.

(1) We show that, for all integers m > 1 and r ∈ {0, . . . , p − 1}, Dm
p (αl,r) = Dm

p (α)

and Dm
p (βl,r) = Dm

p (β). Indeed, by assumption, α, β belong to (Z∗
(p))

n and thus,

according to Lemma 2.1, we get that Dl
p(α) = α and Dl

p(β) = β. Therefore, for

1 6 s 6 n, αs,l,r = Dl
p(αs) = αs if s ∈ C

D
l−1
p (α),r or αs,l,r = Dl

p(αs) + 1 =

αs + 1 if s ∈ P
D

l−1
p (α),r. From (1) of Remark 6.3, it follows that, for all γ ∈

{α1, . . . , αn, β1, . . . , βn}, Dp(γ + 1) = Dp(γ). Consequently, for all integers m > 1,

Dm
p (αs,l,r) = Dm

p (αs) for all 1 6 s 6 n. In a similar fashion, one gets that, for all

integers m > 1, Dm
p (βs,l,r) = Dm

p (βs) for all 1 6 s 6 n. So that, for all m > 1,

Dm
p (αl,r) = Dm

p (α) and Dm
p (βl,r) = Dm

p (β).

(2) As an immediately consequence of (1), we get that if (α,β) satisfies the Pp,l prop-

erty then, for all r ∈ {0, . . . , p − 1}, (αl,r,βl,r) satisfies also the Pp,l property.

Furthermore, it is easily seen that dαl,r ,βl,r
= dα,β . Thus, l is also the order of p in

(Z/dαl,r ,βl,r
Z)∗.

(2) Let α be in Z(p). Then, from the definition of Dp, it follows that the denominator of Dp(α) is a factor
of the denominator of α.
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We can now prove Proposition 4.1.

Proof of Proposition 4.1. — Note that fl,0 is the hypergeometric series nFn−1(α,β; z)

because, by assumption α,β belong to (Z∗
(p)∩(0, 1])n and thus, Lemma 2.1 implies Dl

p(α) =

α and Dl
p(β) = β. We first prove that, for all j ∈ S

D
l−1
p (α),Dl−1

p (β),p, fl,j ∈ 1 + zZ(p)[[z]].

By assumption, (α,β) satisfies the Pp,l property and fl,0 belongs to Z(p)[[z]]. By applying

Lemma 6.2 to fl,0(z) we get that, for every j ∈ S
D

l−1
p (α),Dl−1

p (β),p, fl,j ∈ 1 + zZ(p)[[z]].

Let i be an arbitrary element in S
D

l−1
p (α),Dl−1

p (β),p. We are going to prove that

fl,i ≡
∑

j∈S
D

l−1
p (α),D

l−1
p (β),p

Qi,jf
pl

l,j mod p,

where, each Qi,j belongs to Z(p)[z] with degree less than pl. For this purpose, we are go-

ing to see that we can apply Lemma 6.2 to fl,i. By definition fl,i is the hypergeometric

series nFn−1(αl,i,βl,i; z). By (2) of Remark 6.5, we know that l is also the order of p

in (Z/dαl,i,βl,i
Z)∗ and that (αl,i,βl,i) satisfies the Pp,l property. Further, we also have

fl,i ∈ Z(p)[[z]]. So we are in a position to apply Lemma 6.2 to fl,i and therefore,

fl,i ≡
∑

j∈S
D

l−1
p (αl,i),D

l−1
p (βl,i),p

Qi,jg
pl

i,j mod p, (6.1)

where, Qi,j(z) ∈ Z(p)[z] has degree less than pl and

gi,j =
∑

m>0









∏

s∈C
D

l−1
p (αl,i),j

(Dl
p(αs,l,i))m

∏

s∈P
D

l−1
p (αl,i),j

(Dl
p(αs,l,i) + 1)m

∏

s∈C
D

l−1
p (βl,i),j

(Dl
p(βs,l,i))m

∏

s∈P
D

l−1
p (βl,i),j

(Dl
p(βs,l,i) + 1)m









zm ∈ Z(p)[[z]].

We have already seen that Dl
p(α) = α. Thus, αs,l,i = αs if s ∈ C

D
l−1
p (αl,i),j

and αs,l,i = αs+1

if s ∈ P
D

l−1
p (αl,i),j

. Since, by assumption α belongs to (Z∗
(p)∩(0, 1])

n, by (1) of Remark 6.5, we

deduce that Dl
p(αs,l,i) = Dl

p(αs) = αs. In a similar way, one obtains Dl
p(βs,l,i) = Dl

p(βs) =

βs. Hence,

gi,j =
∑

m>0









∏

s∈C
D

l−1
p (αl,i),j

(αs)m
∏

s∈P
D

l−1
p (αl,i),j

(αs + 1)m

∏

s∈C
D

l−1
p (βl,i),j

(βs)m
∏

s∈P
D

l−1
p (βl,i),j

(βs + 1)m









zm.

Suppose that l > 2. We want to see that gi,j = fl,j. Since l > 2, by (1) of Remark 6.5,

we know that Dl−1
p (αl,i) = Dl−1

p (α) and that Dl−1
p (βl,i) = Dl−1

p (β). Therefore, we have

the equality, S
D

l−1
p (αl,i),D

l−1
p (βl,i),p

= S
D

l−1
p (α),Dl−1

p (β),p. Whence, gi,j = fl,j for all j ∈

S
D

l−1
p (αl,i),D

l−1
p (βl,i),p

. So, from Equation (6.1), we get

fl,i ≡
∑

j∈S
D

l−1
p (α),D

l−1
p (β),p

Qi,jf
pl

l,j mod p.

Suppose now that l = 1. We want to see that gi,j = f1,σ(j), where σ : Sαl,i,βl,i,p →

Sα,β,p is the map given by Lemma 6.1. Since l = 1, it is clear that S
D

l−1
p (αl,i),D

l−1
p (βl,i),p

=
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Sαl,i,βl,i,p. Since l is the order of p in (Z/dα,βZ)
∗ and by hypotheses, α and β belong to

(Z∗
(p))

n, by using Lemma 2.1, we obtain Dp(α) = α and Dp(β) = β. Further, p does not

divide dα,β because, by assumption, for all i, j ∈ {1, . . . , n}, αi, βj belong to Z∗
(p). We also

have, by assumption again, (α,β) satisfies the Pp,1 property. So, by B) of Lemma 6.1, we

infer that, for all j ∈ Sαl,i,βl,i,p, we have Pαl,i,j = Pα,σ(j), Cαl,i,j = Cα,σ(j), Pαl,i,j = Pα,σ(j),

and Cαl,i,j = Cα,σ(j). Thus, for all j ∈ Sαl,i,βl,i,p, gi,j = f1,σ(j). Since, by A) of Lemma 6.1,

σ : Sαl,i,βl,i,p → Sα,β,p is a bijective map, it follows from Equation (6.1) that

f1,i ≡
∑

j∈Sα,β,p

Qi,τ(j)f
p
1,j mod p.

This completes the proof because i is an arbitrary element in S
D

l−1
p (α),Dl−1

p (β),p. �

7. Proof of Lemma 6.1

A) Let t be in Sαa,r,βa,r ,p. Then t mod p ≡ 1 − βs,a,r mod p for some s ∈ {1, . . . , n}

and vp(Qαa,r,βa,r
(t)) = 0. We are going to see that σ is well-defined. For this purpose, we

first show that if there exists s′ ∈ {1, . . . , n} such that t mod p ≡ 1 − βs′,a,r mod p then

s ∈ C
D

a−1
p (β),r if and only if s′ ∈ C

D
a−1
p (β),r and second, we prove that σ(t) ∈ SDa

p(α),Da
p(β),p.

Suppose that s ∈ C
D

a−1
p (β),r. Assume for contradiction that s′ ∈ P

D
a−1
p (β),r. Thus, βs,a,r =

Da
p(βs) and βs′,a,r = Da

p(βs′ )+ 1. Then Da
p(βs) ≡ Da

p(βs′) + 1 mod p because 1− βs,a,r mod

p ≡ t mod p ≡ 1−βs′,a,r mod p. Hence, 1+Da
p(βs′)−Da

p(βs) ∈ pZp. That is a contradiction

to (P5). Therefore, we have s′ ∈ C
D

a−1
p (β),r. In a similar way, one shows that if s′ ∈ C

D
a−1
p (β),r

then s ∈ C
D

a−1
p (β),r.

We now prove that σ(t) ∈ SDa
p(α),Da

p(β),p. By definition, t mod p ≡ 1 − βs,a,r mod p for

some s ∈ {1, . . . , n}. Thus

t mod p =











1−Da
p(βs) mod p if s ∈ C

D
a−1
p (β),r

−Da
p(βs) mod p if s ∈ P

D
a−1
p (β),r.

• Suppose that s ∈ C
D

a−1
p (β),r. Then, t mod p = 1 − Da

p(βs) mod p and therefore, t ∈

EDa
p(α),Da

p(β),p. We now show that t ∈ SDa
p(α),Da

p(β),p. It is clear that we have the following

equality

Qαa,r ,βa,r
(t) = QDa

p(α),Da
p(β)(t) ·

∏

w∈P
D

a−1
p (α),r

(Da
p(αw) + t)

∏

w∈P
D

a−1
p (β),r

(Da
p(βw) + t)

·

∏

w∈P
D

a−1
p (β),r

Da
p(βw)

∏

w∈P
D

a−1
p (α),r

Da
p(αw)

. (7.1)

By (P1), we know that Da
p(β1), . . . ,D

a
p(βn),D

a
p(α1), . . . ,D

a
p(αn) belong to Z∗

(p). Then,






∏

w∈P
D

a−1
p (β),r

Da
p(βw)







/







∏

w∈P
D

a−1
p (α),r

Da
p(αw)






∈ Z∗

(p).
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Now, assume for contradiction that there is γ ∈ {α1, . . . , αn, β1, . . . , βn} such that Da
p(γ)+ t

belongs to pZ(p). Then t = pDa+1
p (γ) − Da

p(γ) because 0 6 t < p. As t mod p = 1 −

Da
p(βs) mod p then 1 − Da

p(βs) +Da
p(γ) ∈ pZ(p), which is a contradiction to (P5). Conse-

quently, Da
p(α1) + t, . . . ,Da

p(αn) + t,Da
p(β1) + t, . . . ,Da

p(βn) + t belong to Z∗
(p). Therefore,







∏

w∈P
D

a−1
p (α),r

(Da
p(αw) + t)







/







∏

w∈P
D

a−1
p (β),r

(Da
p(βw) + t)






∈ Z∗

(p).

Thus, from (7.1), we get vp(QDa
p(α),Da

p(β)(t)) = 0 because vp(Qαa,r ,βa,r
(t)) = 0. So that

t ∈ SDa
p(α),Da

p(β),p.

• Suppose that s ∈ P
D

a−1
p (β),r. Then, t mod p ≡ −Da

p(βs) mod p.

We first prove that t+1 ∈ EDa
p(α),Da

p(β),p. As 0 6 r < p then, (1)r /∈ pZ(p). By assumption,

s ∈ P
D

a−1
p (β),r and thus, (Da−1

p (βs))r ∈ pZ(p). Hence, βs 6= 1. Now, assume for contradiction

that t = p− 1. Since t mod p = −Da
p(βj) mod p, we have p− 1+Da

p(βs) ∈ pZ(p). Therefore,

we have pDa+1
p (βs) − Da

p(βs) = p − 1. Since βs 6= 1, it follows that p − 1 ∈ I
(a+1)
β . But,

according to (P4), p−1 does not belong to I
(a+1)
β . For this reason t 6= p−1. As Sαa,r ,βa,r,p ⊂

{0, 1, . . . , p − 1} then t < p − 1. Hence, t + 1 ∈ EDa
p(α),Da

p(β),p because t + 1 6 p − 1 and

t+ 1 mod p ≡ 1−Da
p(βs) mod p.

We now proceed to see that t+ 1 ∈ SDa
p(α),Da

p(β),p. It is clear that we have the following

equality

QDa
p(α),Da

p(β)(t+1) = Qαa,r ,βa,r
(t) ·

∏

w∈C
D

a−1
p (α),r

(Da
p(αw) + t)

∏

w∈C
D

a−1
p (β),r

(Da
p(βw) + t)

·

∏

w∈P
D

a−1
p (α),r

Da
p(αw)

∏

w∈P
D

a−1
p (β),r

Da
p(βw)

. (7.2)

It follows from (P1) that Da
p(α1), . . ., D

a
p(αn),D

a
p(β1), . . . ,D

a
p(βn) belong to Z∗

(p). Then,







∏

w∈P
D

a−1
p (α),r

Da
p(αw)







/







∏

w∈P
D

a−1
p (β),r

Da
p(βw)






∈ Z∗

(p).

Now, assume for contradiction that there is γ ∈ {α1, . . . , αn} such that Da
p(γ) + t belongs

to pZ(p). Since t mod p = −Da
p(βs) mod p, it follows that Da

p(γ) −Da
p(βs) ∈ pZ(p). That is

a contradiction because, according to (P2), Da
p(γ) − Da

p(βs) /∈ pZ(p). For this reason, the

elements Da
p(α1) + t, . . . ,Da

p(αn) + t belong to Z∗
(p).

Again, suppose, to derive a contradiction, that there is w ∈ C
D

a−1
p (β),r such that Da

p(βw)+

t belongs to pZ(p). Since t ≡ −Da
p(βs) mod p, we obtain Da

p(βw) − Da
p(βs) ∈ pZ(p). Then,

according to (P3), βw = βs. On the one hand, we have (Da−1
p (βs))r ∈ pZ(p) because s ∈

P
D

a−1
p (β),r. On the other hand, (Da−1

p (βs))r /∈ pZ(p) because βw = βs and w ∈ C
D

a−1
p (β),r. So

that, we have a contradiction. For this reason, for every w ∈ C
D

a−1
p (β),r, D

a
p(βw) + t belongs
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to Z∗
(p). Consequently, the element







∏

w∈C
D

a−1
p (α),r

(Da
p(αw) + t)







/







∏

w∈C
D

a−1
p (β),r

(Da
p(βw) + t)






∈ Z∗

(p).

Then, it follows from Equation (7.2) that vp(QDa
p(α),Da

p(β)(t+1)) = 0 because vp(Qαa,r ,βa,r
(t)) =

0. So that, we have t+ 1 ∈ SDa
p(α),Da

p(β),p.

Therefore, we have σ is well-defined. In order to prove that σ is a bijective map we are

going to show that its inverse is τ : SDa
p(α),Da

p(β),p → Sαa,r ,βa,r,p.

Let t be in SDa
p(α),Da

p(β),p. Then vp(QDa
p(α),Da

p(β)(t)) = 0 and t mod p ≡ 1−Da
p(βs) mod p

for some s ∈ {1, . . . , n}. We are going to see that τ is well-defined. For this purpose, we first

show that if there exists s′ ∈ {1, . . . , n} such that t mod p ≡ 1 − Da
p(βs′) mod p then,

s ∈ C
D

a−1
p (β),r if and only if s′ ∈ C

D
a−1
p (β),r and second, we prove that τ(t) ∈ Sαa,r ,βa,r,p.

Suppose that s ∈ C
D

a−1
p (β),r. Note that Da

p(βs)−Da
p(βs′) ∈ pZ(p) because 1−Da

p(βs) mod p =

t mod p = 1 − Da
p(β

′
s). So according to (P3), βs = βs′ . So, (Da−1

p (βs′))r /∈ pZ(p) because

s ∈ C
D

a−1
p (β),r. Hence, s′ ∈ C

D
a−1
p (β),r. In a similar way, one shows that if s′ ∈ C

D
a−1
p (β),r

then s ∈ C
D

a−1
p (β),r. We now proceed to show that τ(t) ∈ Sαa,r ,βa,r,p.

• Suppose that t mod p ≡ 1−Da
p(βs) mod p with s ∈ C

D
a−1
p (β),r. Then βs,a,r = Da

p(βs)

and therefore, t ∈ Eαa,r ,βa,r,p. We want to see that t ∈ Sαa,r,βa,r ,p. We have the following

equality

QDa
p(α),Da

p(β)(t) = Qαa,r,βa,r
(t) ·

∏

w∈P
D

a−1
p (β),r

(Da
p(βw) + t)

∏

w∈P
D

a−1
p (α),r

(Da
p(αw) + t)

·

∏

w∈P
D

a−1
p (α),r

Da
p(αw)

∏

w∈P
D

a−1
p (β),r

Da
p(βw)

. (7.3)

By (P1), we know that Da
p(α1), . . . ,D

a
p(αn), D

a
p(β1), . . . ,D

a
p(βn) belong to Z∗

(p). Therefore,







∏

w∈P
D

a−1
p (α),r

Da
p(αw)







/







∏

w∈P
D

a−1
p (β),r

Da
p(βw)






∈ Z∗

(p).

Now, assume for contradiction that there is γ ∈ {α1, . . . , αn, β1, . . . , βn} such that Da
p(γ)+ t

belongs to pZ(p). Since 0 6 t < p, it follows that t = pDa+1
p (γ)−Da

p(γ). As t mod p ≡ 1 −

Da
p(βs) mod p then 1−Da

p(βs)+Da
p(γ) ∈ pZ(p). This a contradiction to (P5). Consequently,

the elements Da
p(β1) + t, . . . ,Da

p(βn) + t, Da
p(α1) + t, . . . ,Da

p(αn) + t belong to Z∗
(p). Thus,







∏

w∈P
D

a−1
p (β),r

(Da
p(βw) + t)







/







∏

w∈P
D

a−1
p (α),r

(Da
p(αw) + t)






∈ Z∗

(p).

Then, from Equation (7.3), we have vp(Qαa,r ,βa,r
(t)) = 0 because vp(QDa

p(α),Da
p(β)(t)) = 0.

So that, t ∈ Sαa,r ,βa,r,p.
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• Suppose that t mod p ≡ 1 − Da
p(βs) mod p with s ∈ P

D
a−1
p (β),r. Then βs,a,r =

Da
p(βs) + 1. We want to see that t − 1 ∈ Sαa,r,βa,r ,p. To this end, we first prove that

t− 1 ∈ Eαa,r ,βa,r,p.

Assume for contradiction that t = 0. Then, 1−Da
p(βs) ∈ pZ(p). Since, βn = 1 and, for all

integers m > 1, Dm
p (1) = 1, it follows that Da

p(βn)−Da
p(βs) ∈ pZ(p). Then, from (P3), we

obtain βn = βs. Thus, 1 = βs. As s ∈ P
D

a−1
p (β),r then, by definition of the set P

D
a−1
p (β),r, we

have (Da−1
p (βs))r ∈ pZ(p). Thus, (1)r ∈ pZ(p). But, (1)r /∈ pZ(p) because r ∈ {0, . . . , p− 1}.

Consequently, t > 0. Thus, t − 1 ∈ {0, . . . , p − 1}. As t − 1 mod p ≡ −Da
p(βs) mod p and

βs,a,r = Da
p(βs) + 1 then t− 1 ∈ Eαa,r ,βa,r,p.

Now, we have the following equality

QDa
p(α),Da

p(β)(t) = Qαa,r ,βa,r
(t− 1) ·

∏

w∈C
D

a−1
p (α),r

(Da
p(αw) + t− 1)

∏

w∈C
D

a−1
p (β),r

(Da
p(βw) + t− 1)

·

∏

w∈P
D

a−1
p (α),r

Da
p(αw)

∏

w∈P
D

a−1
p (β),r

Da
p(βw)

.

(7.4)

By (P1), we know that Da
p(α1), . . . ,D

a
p(αn), D

a
p(β1), . . . ,D

a
p(βn) belong to Z∗

(p). Then,






∏

w∈P
D

a−1
p (α),r

Da
p(αw)







/







∏

w∈P
D

a−1
p (β),r

Da
p(βw)






∈ Z∗

(p).

Assume for contradiction that there is γ ∈ {α1, . . . , αn} such that Da
p(γ) + t− 1 belongs

to pZ(p). Since t− 1 mod p ≡ −Da
p(βs) mod p, it follows that Da

p(γ)−Da
p(βs) ∈ pZ(p). That

is a contradiction because, according to (P2), Da
p(γ)−Da

p(βs) /∈ pZ(p). For this reason, the

elements Da
p(α1) + t− 1, . . . ,Da

p(αn) + t− 1 belong to Z∗
(p).

Again, suppose, to derive a contradiction, that there is w ∈ C
D

a−1
p (β),r such that Da

p(βw)+

t − 1 belongs to pZ(p). Since t− 1 ≡ −Da
p(βs) mod p, we obtain Da

p(βw) −Da
p(βs) ∈ pZ(p).

Then, according to (P3), we have βw = βs. On the one hand, we have (Da−1
p (βs))r ∈ pZ(p)

because s ∈ P
D

a−1
p (β),r. On the other hand, (Da−1

p (βs))r /∈ pZ(p) because βw = βs and

w ∈ C
D

a−1
p (β),r. So that, we have a contradiction. For this reason, for every w ∈ C

D
a−1
p (β),r,

Da
p(βw) + t− 1 belongs to Z∗

(p). Consequently, the element






∏

w∈C
D

a−1
p (α),r

(Da
p(αw) + t− 1)







/







∏

w∈C
D

a−1
p (β),r

(Da
p(βw) + t− 1)






∈ Z∗

(p).

Thus, from Equation (7.4), we have vp(Qαa,r ,βa,r
(t− 1)) = 0 because vp(QDa

p(α),Da
p(β)(t)) =

0. So that, t− 1 ∈ Sαa,r ,βa,r,p.

Consequently, τ is well-defined and it is clear that τ is the inverse of σ. Therefore, σ is

a bijective map.

B) Let (a, r) be in {1, . . . , l} × {0, . . . , p − 1}, and let t be in Sαa,r ,βa,r,p. We are going

to see that Pαa,r ,t = PDa
p(α),σ(t). As t ∈ Sαa,r ,βa,r,p then t mod p ≡ 1 − βs,a,r for some
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s ∈ {1, . . . , n}. In particular,

t mod p ≡











1−Da
p(βs) mod p if s ∈ C

D
a−1
p (β),r

−Da
p(βs) mod p if s ∈ P

D
a−1
p (β),r.

• Suppose that s ∈ C
D

a−1
p (β),r. Then, t mod p ≡ 1 − Da

p(βs) mod p and σ(t) = t. We

are going to see that Pαa,r ,t ⊂ PDa
p(α),t. Let w be in Pαa,r ,t. Then, (αw,a,r)t ∈ pZ(p). If

w ∈ C
D

a−1
p (α),r then αw,a,r = Da

p(αw). So, (Da
p(αw))t ∈ pZ(p). Hence, w ∈ PDa

p(α),t. Now,

suppose that w ∈ P
D

a−1
p (α),r. Then, αw,a,r = 1 + Da

p(αw). Thus, (Da
p(αw) + 1)t ∈ pZ(p).

Suppose, towards a contradiction, that (Da
p(αw))t /∈ pZ(p). Since (Da

p(αw) + 1)t ∈ pZ(p), we

get Da
p(αw) + t ∈ pZ(p). As 0 6 t 6 p − 1 then t = pDa+1

p (αw) − Da
p(αw). As t mod p ≡

1 − Da
p(βs) mod p then 1 − Da

p(βs) + Da
p(αw) ∈ pZ(p). This leads to a contradiction of

(P5). Whence, (Da
p(αw))t ∈ pZ(p). For this reason, w ∈ PDa

p(α),t. Consequently, we have

Pαa,r ,t ⊂ PDa
p(α),t.

Now, we show that PDa
p(α),t ⊂ Pαa,r ,t. Let w be in PDa

p(α),t. Then, (Da
p(αw))t ∈ pZ(p).

If w ∈ C
D

a−1
p (α),r then αw,a,r = Da

p(αw). Thus, w ∈ Pαa,r ,t. Now, if w ∈ P
D

a−1
p (α),r then

αw,a,r = 1 +Da
p(αw). We have (Da

p(αw))t ∈ pZ(p) and from (P1) we know that Da
p(αw) ∈

Z∗
(p). Thus, (Da

p(αw) + 1)t ∈ pZ(p). Then, w ∈ Pαa,r,t. Consequently, we have PDa
p(α),t ⊂

Pαa,r ,t.

Therefore, Pαa,r ,t = PDa
p(α),t. But, remember that σ(t) = t. Whence, we obtain Pαa,r ,t =

PDa
p(α),σ(t).

• Suppose that s ∈ P
D

a−1
p (β),r. Then t mod p ≡ −Da

p(βs) mod p and σ(t) = t + 1. We

are going to see that Pαa,r ,t ⊂ PDa
p(α),t+1. Let w be in Pαa,r ,t. Then (αw,a,r)t ∈ pZ(p).

Suppose that w ∈ C
D

a−1
p (α),r. Then, αw,a,r = Da

p(αw). So that, (Da
p(αw))t ∈ pZ(p). For this

reason, (Da
p(αw))t+1 ∈ pZ(p). Therefore, w ∈ PDa

p(α),t+1. Suppose now that w ∈ P
D

a−1
p (α),r.

Then, αw,a,r = 1 + Da
p(αw). So that, (Da

p(αw) + 1)t ∈ pZ(p). Thus, (Da
p(αw))t+1 ∈ pZ(p).

Hence, w ∈ PDa
p(α),t+1. Consequently, Pαa,r,t ⊂ PDa

p(α),t+1.

Now, we show that PDa
p(α),t+1 ⊂ Pαa,r,t. Let w be in PDa

p(α),t+1. Then, (Da
p(αw))t+1 ∈

pZ(p). Suppose that w ∈ C
D

a−1
p (α),r. Then, αw,a,r = Da

p(αw). Assume for contradiction that

(Da
p(αw))t /∈ pZ(p). Thus, Da

p(αw)+t ∈ pZ(p). As 0 6 t 6 p−1 then t = pDa+1
p (αw)−Da

p(αw).

Since t mod p ≡ −Da
p(βs) mod p, it follows that Da

p(αw)−Da
p(βs) ∈ pZ(p). This contradicts

our condition (P2). Then, we have (Da
p(αw))t ∈ pZ(p). For this reason, w ∈ Pαa,r,t. Now,

suppose that w ∈ P
D

a−1
p (α),r. Then, αw,a,r = 1+Da

p(αw). By (P1), we know that Da
p(αw) ∈

Z∗
(p) and since (Da

p(αw))t+1 ∈ pZ(p), it follows that (Da
p(αw) + 1)t ∈ pZ(p). So that w ∈

Pαa,r ,t. Consequently, PDa
p(α),t+1 ⊂ Pαa,r ,t.

Therefore, Pαa,r,t = PDa
p(α),t+1. But, remember that σ(t) = t + 1. Whence, we obtain

Pαa,r ,t = PDa
p(α),σ(t).

Thus, for every t ∈ Sαa,r ,βa,r,p, we have Pαa,r ,t = PDa
p(α),σ(t). One shows, in an exactly

similar way that, for every t ∈ Sαa,r ,βa,r,p, we have Pβa,r,t = PDa
p(β),σ(t).
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Finally, for every t ∈ Sαa,r ,βa,r,p, we also have Cαa,r ,t = CDa
p(α),σ(t) because Cαa,r,t is

the complement of Pαa,r,t in {1, . . . , n}, CDa
p(α),σ(t) is the complement of PDa

p(α),σ(t) in

{1, . . . , n}, and we have already seen that Pαa,r ,t = PDa
p(α),σ(t). In a similar way one has

Cβa,r ,t = CDa
p(β),σ(t).

�

8. Proof of Lemma 6.2

Lemma 6.2 is obtained from the following lemma

Lemma 8.1. — Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q \ Z60)
n and let

p be a prime number such that p > dα,β and f(z) := nFn−1(α,β; z) belongs to Z(p)[[z]].

Suppose that (α,β) satisfies the Pp,l property, where l is the order of p in (Z/dα,βZ)
∗.

Then, for each r ∈ Sα,β,p, f1,r ∈ 1 + zZ(p)[[z]] and

f(z) ≡
∑

r∈Sα,β,p

Qrf
p
1,r mod p with Qr(z) =

r′−1
∑

s=r

Qα,β(s)z
s,

where r′ is defined as follows. If r 6= maxEα,β,p then r′ is the element in Eα,β,p such that

r < r′ and (r, r′) ∩ Eα,β,p = ∅ or otherwise, r′ = p.

Proof of Lemma 6.2. — We proceed by induction on a ∈ {1, . . . , l}. Suppose a = 1. By

assumption, (α,β) satisfies the Pp,l property and f(z) ∈ Z(p)[[z]]. Thus, the hypotheses of

Lemma 8.1 are satisfied and we conclude that

f(z) ≡
∑

r∈Sα,β,p

Qrf
p
r mod p,

where, each Qr(z) belongs to Z(p) and has degree less than p, and fr(z) ∈ 1+ zZ(p)[[z]]. We

now suppose that the conclusion of our lemma is true for some a in {1, . . . , l − 1}. We are

going to prove that it is also true for a+ 1. By induction hypothesis, we have

f ≡
∑

r∈S
D

a−1
p (α),D

a−1
p (β),p

Qa,r(z)f
pa

a,r mod p (8.1)

where, for every r ∈ S
D

a−1
p (α),Da−1

p (β),p, Qa,r(z) belongs to Z(p)[z] and has degree less than

pa and fa,r ∈ 1 + zZ(p)[[z]].

We fix r in S
D

a−1
p (α),Da−1

p (β),p. By definition, fa,r(z) = nFn−1(αa,r,βa,r; z). We would

like to apply Lemma 8.1 to fa,r(z). To this end, we are going to see that the hypotheses

of Lemma 8.1 are satisfied. By induction hypothesis, we know that fa,r(z) ∈ Z(p)[[z]] and

thanks to (P1), αa,r,βa,r belong to (Z(p) \ Z60)
n. According to Remark 6.4, (αa,r,βa,r)

satisfies the Pp,l′ property, where l′ is the order of p in (Z/dαa,r ,βa,r
Z)∗. We can then apply

Lemma 8.1 to fa,r and we obtain

fa,r(z) ≡
∑

µ∈Sαa,r,βa,r,p

Pµ(z)g
p
µ mod p, (8.2)
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where, each Pµ(z) ∈ Z(p)[z] has degree less than p, and

gµ(z) =
∑

m>0







∏

s∈Cαa,r,µ

Dp(αs,a,r)m
∏

s∈Pαa,r,µ

(Dp(αs,a,r) + 1)m

∏

s∈Cβa,r,µ

Dp(βs,a,r)m
∏

s∈Pβa,r,µ

(Dp(βs,a,r) + 1)m






zm ∈ 1 + zZ(p)[[z]].

By (2) of Remark 6.3, we know that Dp(αa,r) = Da+1
p (α) and that Dp(βa,r) = Da+1

p (β).

Hence, it follows that, for all µ ∈ Sαa,r ,βa,r,p,

gµ(z) =
∑

m>0







∏

s∈Cαa,r,µ

Da+1
p (αs)m

∏

s∈Pαa,r,µ

(Da+1
p (αs) + 1)m

∏

s∈Cβa,r,µ

Da+1
p (βs)m

∏

s∈Pβa,r,µ

(Da+1
p (βs) + 1)m






zm.

We now want to see that gµ(z) = fa+1,σ(µ) for all µ ∈ Sαa,r ,βa,r,p, where σ : Sαa,r ,βa,r,p →

SDa
p(α),Da

p(β),p is the bijective map given by Lemma 6.1. By definition, we have fa+1,γ =

nFn−1(αa+1,γ ,βa+1,γ ; z) for all γ ∈ SDa
p(α),Da

p(β),p. Thus,

fa+1,γ =
∑

m>0









∏

s∈CDa
p(α),γ

Da+1
p (αs)m

∏

s∈PDa
p(α),γ

(Da+1
p (αs) + 1)m

∏

s∈CDa
p(β),γ

Da+1
p (βs)m

∏

s∈PDa
p(β),γ

(Da+1
p (βs) + 1)m









zm.

By invoking B) of Lemma 6.1, we obtain, for every µ ∈ Sαa,r ,βa,r,p, the following equal-

ities Pαa,r,µ = PDa
p(α),σ(µ), Cαa,r ,µ = CDa

p(α),σ(µ), Pβa,r,µ = PDa
p(β),σ(µ), and Cβa,r,µ =

CDa
p(β),σ(µ). For this reason, gµ(z) = fa+1,σ(µ). By A) of Lemma 6.1, we know that σ :

Sαa,r ,βa,r,p → SDa
p(α),Da

p(β),p is bijective. Then, from (8.2), we infer that

fa,r(z) ≡
∑

γ∈SDa
p(α),Da

p (β),p

Tr,γ(z)f
p
a+1,γ mod p (8.3)

where Tr,γ(z) ∈ Z(p)[z] with degree less than p. As r in S
D

a−1
p (α),Da−1

p (β),p is an arbitrary

element, then, from Equalities (8.1) and (8.3), we obtain

f(z) ≡
∑

γ∈SDa
p(α),Da

p (β),p

Qa+1,γf
pa+1

a+1,γ mod p, with Qa+1,γ =
∑

r∈S
D

a−1
p (α),D

a−1
p (β),p

Qa,r(z)T
pa

r,γ.

For every γ ∈ SDa
p(α),Da

p(β),p, the polynomial Qa+1,γ has degree less than pa+1 because, for

every r ∈ S
D

a−1
p (α),Da−1

p (β),p, Qa,r ∈ Z(p)[z] has degree less than pa and Tr,γ ∈ Z(p)[z] has

degree less than p. This completes the proof. �

The remainder of this section is devoted to proving Lemma 8.1.

8.1. Cartier operators

The proof of the Lemma 8.1 depends essentially on Lemma 8.2. In preparation for stating

Lemma 8.2, we recall the definition of Cartier operators over the ring Fp[[z]]. For each
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r ∈ {0, . . . , p− 1}, we have the Fp-linear operator Λr : Fp[[z]] → Fp[[z]] given by

Λr





∑

j>0

a(n)zj



 =
∑

j>0

a(jp+ r)zj .

The operators Λ0, . . . ,Λp−1 are called the Cartiers Operators(3) .

Lemma 8.2. — Let the assumptions be as in Lemma 8.1. Then

f(z) ≡
∑

r∈Sα,β,p

Pr(z)Λr(f)
p mod p with Pr(z) =

r′−1
∑

s=r

Qα,β(s)

Qα,β(r)
zs,

where r′ is defined as follows. If r 6= maxEα,β,p then r′ is the element in Eα,β,p such that

r < r′ and (r, r′) ∩ Eα,β,p = ∅ or otherwise, r′ = p.

8.2. Auxiliary result I

In order to prove Lemma 8.2, we need the next auxiliary results which we state and

prove. These auxiliary results deal with p-adic properties of the sequence {Qα,β(i)}i>0. The

main result is Lemma 8.5.

Lemma 8.3. — Let p be a prime number and let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1)

be in (Z(p) \ Z60)
n. Then, for all integers j > 0,

Qα,β(jp) = QDp(α),Dp(β)(j)ω,

where ω ∈ Z∗
(p) and ω ≡ 1 mod p.

Proof. — If j = 0 then there is nothing to prove. So, we suppose that j > 0. Let γ

be in {α1, . . . , αn, β1, . . . , βn} and let r be the unique integer in {0, 1, . . . , p − 1} such that

pDp(γ)− γ = r. It is clear that

(γ)jp =

p−1
∏

t=0

(γ + t)

p−1
∏

t=0

(γ + p+ t) · · ·

p−1
∏

t=0

(γ + (j − 1)p+ t).

Note that, for all nonnegative integers s, Dp(γ + sp) = Dp(γ) + s because p(Dp(γ) + s) −

(γ + sp) = r. Then

(γ)jp =

j−1
∏

s=0









p(Dp(γ) + s)

p−1
∏

t=0
t6=r

(γ + sp+ t)









= pj
j−1
∏

s=0

(Dp(γ) + s)

j−1
∏

s=0









p−1
∏

t=0
t6=r

(γ + sp+ t)









= pj(Dp(γ))j

j−1
∏

s=0









p−1
∏

t=0
t6=r

(γ + sp+ t)









.

(3) We refer the reader to [3, Section 2], where the authors explain why these operators are referred to
as the Cartiers Operators.
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By Wilson’s Theorem, it follows that, for all nonnegative integers s,

p−1
∏

t=0
t6=r

(γ + sp+ t) ≡ (p− 1)! ≡ −1 mod p.

Therefore,

(γ)jp = pj(Dp(γ))jλ, (8.4)

where λ ∈ Z∗
(p) and λ ≡ (−1)j mod p.

Since γ is an arbitrary element in {α1, . . . , αn, β1, . . . , βn} and

Qα,β(jp) =
(α1)jp · · · (αn)jp

(β1)jp · · · (βn−1)jp(1)jp
,

it follows from Equation (8.4) that

Qα,β(jp) = QDp(α),Dp(β)(j)ω, (8.5)

where ω ∈ Z∗
(p) and ω ≡ 1 mod p.

�

Lemma 8.4. — Let p be a prime number, let α be in Z(p) and let n > 1 be an integer.

If n = r0 + r1p+ · · ·+ rsp
s is the p-adic expansion of n then

(α)n ∈ pn1(Dp(α))n1 (α+ n1p)r0Z
∗
(p),

where n1 = r1 + r2p+ · · ·+ rsp
s−1.

Proof. — It is not hard to see that (α)n =
∏n1−1

k=0 (α+ kp)p · (α+ n1p)r0 . We know that

there is a unique r ∈ {0, . . . , p− 1} such that α+ r = pDp(α). Then, for all integers m > 1,

α+mp+ r = p(Dp(α) +m). Hence, for all m > 1,

(α+mp)p = p(Dp(α) +m)

p−1
∏

i=0
i6=r

(α+mp+ i).

But, for all 0 6 i < p such that i 6= r, (α +mp+ i) ∈ Z∗
(p) because r is the unique element

in {0, . . . , p− 1} such that α+ r ∈ pZ(p). So, we conclude that

(α)n ∈ pn1(Dp(α))n1 (α+ n1p)r0Z
∗
(p).

�

Lemma 8.5. — Let the assumptions be as in Lemma 8.1. If vp(Qα,β(r)) > 0 then, for

every j ∈ N, vp(Qα,β(jp+ r)) > 0.

Proof. — We split the proof into five steps.

Step I: We will prove that, for all integers a > 1, Da
p(αi)−Da

p(βj) ∈ Z∗
(p). Since (α,β)

satisfies the Pp,l propery, we know that, for all 1 6 m 6 l, Dm
p (αi) − Dm

p (βj) ∈ Z∗
(p) for

all 1 6 i, j 6 n. Therefore, it is sufficient to prove that, for all a > 1, Da
p(α) = Dq

p(α)

and Da
p(β) = Dq

p(β) where q = a mod l with 1 6 q < l if a 6= 0 mod l, and q = l if
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a = 0 mod l. From the definition of Dp, it is not hard to see that, for all a > 1, dDa
p(α),Da

p(β)

divides dα,β. Consequently, pl ≡ 1 mod dDa
p(α),Da

p(β) for all a > 1. Further, for all 1 6

m 6 l, Dm
p (α), Dm

p (β) ∈ (Z∗
(p) ∩ (0, 1])n because, by assumption, (α,β) satisfies (P1). So,

by Lemma 2.1, we conclude that, for all t > 1 and 1 6 m 6 l, Dlt
p (D

m
p (α)) = Dm

p (α)

and Dlt
p (D

m
p (β)) = Dm

p (β). Consequently, if a = q + lt with 0 6 q < l and q 6= 0 then

Da
p(α) = Dq

p(α), Da
p(β) = Dq

p(β) and if q = 0, Da
p(α) = D

(t−1)l
p ((Dl

p(α)) = Dl
p(α),

Da
p(β) = D

(t−1)l
p ((Dl

p(β)) = Dl
p(β).

Step II Let (a, b) be in Z>0 × {0, . . . , p} and let γ ∈ {α1, . . . , αn, β1, . . . , βn−1}. If

vp(D
a
p(γ)b) > 1 then vp(D

a
p(γ)b) = 1. In fact, we know that there is c < b such that

Da
p(γ) + c ∈ pZ(p) because vp(D

a
p(γ)b) > 1. So, Da

p(γ) + c = pDa+1
p (γ) given that c < b 6 p.

Therefore,

Da
p(γ)b = pDa+1

p (γ)
b−1
∏

t=0,t6=c

(Da
p(γ) + t).

But the p-adic valuation of
∏b−1

t=0,t6=c(D
a
p(γ) + t) is zero because c is the unique element in

{0, . . . , p − 1} such that Da
p(γ) + c ∈ pZ(p). Hence, vp(D

a
p(γ)b) = 1 + vp(D

a+1
p (γ)). Now,

we show that vp(D
a+1
p (γ)) = 0. From the definition of Dp, it is clear that for all t > 1,

dDt
p(α),Dt

p(β) divides dα,β. Since, by assumption, p > dα,β, we get that, for all t > 1,

p > dDt
p(α),Dt

p(β). Further, Dp(γ) ∈ Z∗
(p) ∩ (0, 1] because (α,β) satisfies the Pp,l property.

Thus, by (3) of Proposition 3.3, we deduce that, for all t > 1, Dt
p(γ) ∈ Z∗

(p). In particular,

vp(D
a+1
p (γ)) = 0. Hence, vp(D

a
p(γ)b) = 1.

Step III: We now prove that, for all (a, b) ∈ Z>0 × {0, . . . , p},

vp(QDa
p(α),Da

p(β)(b)) = #PDa
p(α),b −#PDa

p(β),b.

To this end, it is sufficient to show that, for all (a, b) ∈ Z>0 × {0, . . . , p},

vp(D
a
p(β1)b · · ·D

a
p(βn)b) = #PDa

p(β),b and vp(D
a
p(α1)b · · ·D

a
p(αn)b) = #PDa

p(α),b.

Let i be in {0, . . . , n} such that vp(D
a
p(βi)b) > 1. Then, according to Step II, vp(D

a
p(βi)b) = 1.

Therefore, we get vp(D
a
p(β1)r · · ·Da

p(βn)b) = #PDa
p(β),b. Similarly, we also have the equality

vp(D
a
p(α1)b · · ·D

a
p(αn)b) = #PDa

p(α),b.

Step IV: In this step we prove that, for all (a, b) ∈ Z>0 × {0, . . . , p}, #PDa
p(β),b 6

#PDa
p(α),b. By assumption nFn−1(α,β) ∈ Z(p)[[z]]. So, by Lemma 8.3, we deduce that, for

all (a, b) ∈ Z>0 × {0, . . . , p}, QDa
p(α),Da

p(β)(b) ∈ Z(p). Thus, from Step III, we conclude that

#PDa
p(β),b 6 #PDa

p(α),b. As a consequence, we get that, for any (a, b) ∈ Z>0 × {0, . . . , p},

there is an injective map ξa,b : PDa
p(β),b → PDa

p(α),b. So, without losing any generality, we

assume PDa
p(β),b ⊂ PDa

p(α),b.

Step V Let j > 1 be an integer. We now prove that vp(Qα,β(jp + r)) > 0. The p-adic

expansion of jp+ r is of the form j0 + j1p+ · · ·+ jkp
k, where j0 = r and js ∈ {0, . . . , p− 1}

for all 1 6 s 6 k. For all 0 6 s < k, we set τs = js+1p + · · · + jkp
k−s and τk = 0. From
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Lemma 8.4, we deduce that

Qα,β(jp+ r) ∈ ΛZ∗
(p) with Λ =

k
∏

s=0

(Ds
p(α1) + τs))js · · · (D

s
p(αn) + τs))js

(Ds
p(β1) + τs))js · · · (D

s
p(βn) + τs))js

.

Thus, in order to show that vp(Qα,β(jp+ r)) > 0, it is sufficient to see that vp(Λ) > 0.

For every s in {0, . . . , k}, we put Js = {i ∈ {0, . . . , n} : vp((D
s
p(βi) + τs))js) > 1} and

Is = {i ∈ {0, . . . , n} : vp((D
s
p(αi) + τs))js) > 1}. Actually, Js = PDs

p(β),js . In fact, if i ∈ Js

then there exists ks < js such that Ds
p(βi) + τs + ks ∈ pZp. Since τs ∈ pZ(p), we have

Ds
p(βi) + ks ∈ Z(p). Thus, i ∈ PDs

p(β),js . So Js ⊂ PDs
p(β),js . In a similar way, one obtains

PDs
p(β),js ⊂ Js. Similarly, one shows that Is = PDs

p(α),js . Thus, from Step IV, Js ⊂ Is. In

addition, Js = Js,1∪Js,>1, where Js,1 is the set of i ∈ Js such that vp((D
s
p(βi)+τs))js) = 1

and Js,>1 is the complement of Js,1 in Js.

It is easily checked that Λ = ΨΘ, where

Ψ =

k
∏

s=0
Js,>1=∅

∏

i∈Js

(

Ds
p(αi) + τs

)

js

∏

i∈Js

(

Ds
p(βi) + τs

)

js

·

∏

i/∈Is

(

Ds
p(αi) + τs

)

js

∏

i/∈Js

(

Ds
p(βi) + τs

)

js

k
∏

s=0
Js,>1 6=∅

∏

i∈Js

(

Ds
p(αi) + τs

)

js

∏

i∈Js,1

(

Ds
p(βi) + τs

)

js

·

∏

i/∈Is

(

Ds
p(αi) + τs

)

js

∏

i/∈Js

(

Ds
p(βi) + τs

)

js

and

Θ =
k
∏

s=0
Js,>1=∅

∏

i∈Is\Js

(

Ds
p(αi) + τs

)

js
·

k
∏

s=0
Js,>1 6=∅

∏

i∈Is\Js

(

Ds
p(αi) + τs

)

js

∏

i∈Js,>1

(

Ds
p(βi) + τs

)

js

.

We also have Θ = Θ0Θ1, where

Θ0 =
∏

i∈I0\J0

(

Ds
p(αi) + τ0

)

j0
and Θ1 =

k
∏

s=1

∏

i∈Is\Js

(

Ds
p(αi) + τs

)

js

k
∏

s=0
Js,>1 6=∅

∏

i∈Js,>1

(

Ds
p(βi) + τs

)

js

.

We now prove vp(ΨΘ1) > 0. From the definition of Ψ, it is clear that

vp(Ψ) >

k
∑

s=0
Js,>1 6=∅

(#Js −#Js,1).

So, in order to prove that vp(ΨΘ1) > 0, it is sufficient to prove that

vp(Θ1) >

k
∑

s=0
Js,>1 6=∅

(#Js,1 −#Js). (8.6)
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Let s be in {0, . . . , k} such that Js,>1 6= ∅. Note that k − s > 0 because Jk,>1 = ∅(4) . Let

i ∈ Js,>1 and let l = vp((D
s
p(βi) + τs))js). Then l > 2 and there exists ks < js such that

Ds
p(βi) + τs + ks ∈ pZ(p). We now proceed to prove some properties which are crucial to

prove Equation (8.6).

(A). We prove that vp(D
s
p(βi) + τs + ks) = l. In fact, we have

(Ds
p(βi) + τs))js = (Ds

p(βi) + τs + ks)

js−1
∏

t=0,t6=ks

(Da
p(βi) + τs + t).

But the p-adic valuation of
∏js−1

t=0,t6=ks
(Da

p(βi) + τs + t) is zero because ks < js < p and ks is

the unique element in {0, . . . , p− 1} such that Ds
p(βi) + τs + ks ∈ pZ(p). Thus, vp(D

s
p(βi) +

τs + ks) = l. In particular, we have Ds
p(βi) + τs + ks = plµ, with µ ∈ Z∗

(p).

(B). We now show that, for all 1 6 m 6 min{k− s, l− 1}, Ds+m
p (βi)+ js+m ∈ pZ(p) and

that

Ds+m
p (βi) + js+m + js+m+1p+ · · ·+ jkp

k−s−m = pl−mµ.

We proceed by induction on m ∈ {1, . . . , q − 1}, where q = min{k − s, l − 1}. From (A),

we have Ds
p(βi) + τs + ks = plµ, with µ ∈ Z∗

(p). As τs ∈ pZ then Ds
p(βi) + ks ∈ pZ(p).

Therefore, Ds
p(βi) + ks = pDs+1

p (βi) because ks < js < p. Whence, pDs+1
p (βi) + τs = plµ.

Remember that τs = js+1p+ · · ·+kkp
k−s. Hence, Ds+1

p (βi)+js+1+js+2p+ · · ·+jkp
k−s−1 =

pl−1µ and Ds+1
p (βi) + js+1 ∈ pZ(p). We now suppose that for some m ∈ {1, . . . , q − 2},

Ds+m
p (βi) + js+m ∈ pZ(p) and that

Ds+m
p (βi) + js+m + js+m+1p+ · · ·+ jkp

k−s−m = pl−mµ.

We have Ds+m
p (βi) + js+m = pDs+m+1

p (βi) because js+m < p and, by induction hypothesis,

Ds+m
p (βi) + js+m ∈ pZ(p). So

Ds+m+1
p (βi) + js+m+1 + · · ·+ jkp

k−s−m − 1 = pl−m−1µ.

(C). We now see that l 6 k− s+1. Suppose, towards a contradiction, that l > k− s+1.

From (B), we know that, for all m ∈ {1, . . . , k − s},

Ds+m
p (βi) + js+m + js+m+1p+ · · ·+ jkp

k−s−m = pl−mµ.

In particular, Dk
p(βi) + jk = pl−k+sµ and Dk

p(βi) + jk ∈ pZ(p). Hence, Dk
p(βi) + jk =

pDk+1
p (βi) because jk < p. So Dk+1

p (βi) = pl−k+s−1µ. But l − k + s − 1 > 0 and hence,

Dk+1
p (βi) ∈ pZ(p). From the definition of Dp, it is clear that, for all t > 1, dDt

p(α),Dt
p(β)

divides dα,β. Since by assumption, p > dα,β, we get that, for all t > 1, p > dDt
p(α),Dt

p(β).

Further, Dp(βi) ∈ Z∗
(p) ∩ (0, 1] because (α,β) satisfies the Pp,l property. Thus, by (3) of

Proposition 3.3, we deduce that, for all t > 1, Dt
p(βi) ∈ Z∗

(p). In particular, Dk+1
p (βi) ∈ Z∗

(p),

which is a contradiction to the fact that Dk+1
p (βi) ∈ pZ(p). Consequently, l 6 k − s+ 1.

(D). Now, we prove see that, for every m ∈ {1, . . . , l−1}, i ∈ Is+m \Js+m. From (B) and

(C), we have Ds+m
p (βi)+ js+m ∈ pZ(p) for all m ∈ {1, . . . , l− 1}. Then i ∈ P

D
s+m
p (β),js+m+1.

(4) If Jk,>1 6= ∅ then there is i ∈ {1, . . . , n} such that vp(Dk
p(βi)jk ) > 1. Since jk < p, Step II implies

vp(Dk
p(βi)jk ) = 1 which is a contradiction. Thus, Jk,>1 = ∅.
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By Step IV, we haveP
D

s+m
p (β),js+m+1 ⊂ P

D
s+m
p (α),js+m+1. Hence, i ∈ P

D
s+m
p (α),js+m+1. From

Step I, we know that, for all a > 1, Da
p(αi)−Da

p(βj) belongs to Z∗
(p) for all 1 6 i, j 6 n. Since

Ds+m
p (βi) + js+m ∈ pZ(p), we get that, for all r ∈ {1, . . . , n}, Ds+m

p (αr) + js+m /∈ pZ(p).

Hence, i ∈ P
D

s+m
p (α),js+m

= Is+m. We now show that i /∈ Js+m. Aiming for a contradiction,

suppose that i ∈ Js+m. Thus, there is d < js+m such that Ds+m
p (βi) + d + τjs+m

∈ pZp.

Since τjs+m
∈ pZ, Ds+m

p (βi) + d ∈ pZp. But we know that Ds+m
p (βi) + js+m ∈ pZ(p). Thus,

js+m − d ∈ pZ. That is a contradiction because 0 6 d < js+m < p. Consequently, for all

m ∈ {1, . . . , l − 1}, i ∈ Is+m \ Js+m. In particular, vp(D
s
p(αi) + τs+m)js+m

) > 1. Whence,

vp

(

∏l−1
m=1(D

s
p(αi) + τs+m)js+m

(Ds
p(βi) + τjs)js

)

> −1.

From (C), we have l 6 k−s+1. Thus, for all m ∈ {1, . . . , l−1}, s+m 6 k. So, from (D) it

follows that the product
∏l−1

m=1(D
s
p(αi)+τs+m)js+m

is a factor of
k
∏

s=1

∏

i∈Is\Js

(

Ds
p(αi) + τs

)

js
.

Consequenly,

vp(Θ1) >

k
∑

s=0
Js,>1 6=∅

(#Js,1 −#Js)

because #Js,>1 = #Js −#Js,1.

Finally, from Step III, we have

vp(Qα,β(r)) = #Pα,r −#Pβ,r.

By assumption, vp(Qα,β(r)) > 0. Since r = j0, it is not hard to see that J0 = Pβ,r and that

I0 = Pα,r. Thus #J0 < #I0. Whence, vp(Θ0) > 0. This completes the proof.

�

Lemma 8.6. — Let α = (α1, . . . , αn) and β = (β1, . . . , βn−1, 1) be in (Q\Z60)
n and let

p be a prime number such that H(α,β) ∈ Z(p)[z][δ]. Suppose that A(z) = amzm+· · ·+arz
r ∈

Fp[z] is a solution of H(α,β, p). If am 6= 0 then m mod p is an exponent at zero of H(α,β, p),

that is, m mod p belongs to {0, 1− β1 mod p, . . . , 1− βn−1 mod p}.

Proof. — It is not hard to see that

H(α,β, p)(A(z)) =

n
∏

j=1

(m+ βj − 1 mod p)amzm + zm+1B(z),

where B(z) is a polynomial. As H(α,β, p)(A(z)) = 0 then
∏n

j=1(m+ βj − 1 mod p)am = 0.

So,
∏n

j=1(m+βj −1 mod p) = 0 because, by hypothesis, am 6= 0. Thus, we have m mod p =

1− βj mod p for some j ∈ {1, . . . , n}.

�
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8.3. Proof of Lemma 8.2

Let us write Eα,β,p = {e0, e1, . . . , ek}, where ei < ei+1 for all i ∈ {0, . . . , k} and e0 = 0.

We set ek+1 = p. So, for all ei ∈ {e0, e1, . . . , ek} and, for all nonnegative intergers j, we set

Pj,ei(z) =

jp+ei+1−1
∑

s=jp+ei

(Qα,β(s) mod p)zs.

We split the proof into three steps:

Step I. For all ei ∈ {e0, . . . , ek} and for all nonnegative integers j, the polynomial Pj,ei (z)

is a solution of H(α,β, p).

Step II. If Qα,β(ei) mod p = 0 then, for every integer j > 0, Pj,ei(z) is the zero polyno-

mial.

Step III. If Qα,β(ei) mod p 6= 0 then, for every integer j > 0,

Pj,ei(z) =
Qα,β(jp+ ei)

Qα,β(ei)
mod p · zjpP0,ei(z).

Proof of Step I. — It is not hard to see that

H(α,β) = (1− z)δn + [Sn,1(β − 1)− zSn,1(α)]δn−1 + · · ·+ Sn,n(β − 1)− zSn,n(α), (8.7)

where 1 = (1, . . . , 1) ∈ Nn and Sn,r =
∑

16i1<···<ir6n Xi1 · · ·Xir .

Now, we set I(z) =
∏n

i=1(z + βi − 1) and T (z) =
∏n

i=1(z + αi). Then, it follows from

Equality (8.7) that

H(α,β, p)(Pj,ei (z)) = (I(jp+ ei)Qα,β(jp+ ei) mod p)zjp+ei

+

jp+ei+1−1
∑

k=jp+ei+1

((I(k)Qα,β(k)− T (k − 1)Qα,β(k − 1)) mod p)zk

− (T (jp+ ei+1 − 1)Qα,β(jp+ ei+1 − 1) mod p)zjp+ei+1 .

We now prove that H(α,β, p)(Pj,ei(z)) = 0. Recall that, by definition, ei mod p belongs

to {0, 1 − β1, . . . , 1 − βn−1} mod p. Then, we have I(ei) mod p ≡ 0. But, I(jp + ei) ≡

I(ei) mod p. Thus, I(jp + ei) mod p ≡ 0. So that, I(jp + ei)Qα,β(jp + ei) mod p ≡ 0.

Furthermore, it is clear that, for every positive integer t we have

I(t)Qα,β(t)−Qα,β(t− 1)T (t− 1) = 0.

By hypotheses, α and β belong to Zn
(p). Thus, for every integer t, I(t) and T (t−1) belong to

Z(p). Again, by hypotheses, we know that nFn−1(α,β; z) belongs to Z(p)[[z]]. Consequently,

for every integer t > 1, Qα,β(t) and Qα,β(t−1) belong to Z(p). Therefore, from the previous

equality we conclude that, for every positive integer t,

(I(t)Qα,β(t)−Qα,β(t− 1)T (t− 1)) mod p = 0. (8.8)
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In particular, for every k ∈ {jp+ ei + 1, . . . , jp+ ei+1 − 1}, we have

(I(k)Qα,β(k)− T (k − 1)Qα,β(k − 1)) mod p = 0

and

(I(jp+ ei+1)Qα,β(jp+ ei+1)−Qα,β(jp+ ei+1 − 1)T (jp+ ei+1 − 1)) mod p = 0.

Since ei+1 mod p is an exponent at zero of H(α,β, p), I(ei+1) mod p ≡ 0. But, it is clear

that I(jp+ ei+1) ≡ I(ei+1) mod p. Thus, I(jp+ ei+1) mod p ≡ 0. Therefore, we have

Qα,β(jp+ ei+1 − 1)T (jp+ ei+1 − 1)) ≡ 0 mod p.

So that, H(α,β, p)(Pj,ei(z)) = 0.

�

Proof of Step II. — Suppose that Qα,β(ei) mod p = 0. Let j be a nonnegative integer.

We want to show that Pj,ei(z) is the zero polynomial. For this purpose, we show by induction

on s ∈ {jp+ei, jp+ei+1, . . . , jp+ei+1−1} that Qα,β(s) ≡ 0 mod p. Since vp(Qα,β(ei)) > 0,

by Lemma 8.5, we have vp(Qα,β(jp + ei)) > 0. So that,Qα,β(jp + ei)) mod p = 0. Now,

suppose that Qα,β(s) ≡ 0 mod p for some s in the set {jp+ei, jp+ei+1, . . . , jp+ei+1−2}.

From Equation (8.8) we know that (I(s + 1)Qα,β(s + 1) − Qα,β(s)T (s)) mod p = 0. By

applying our induction hypothesis, we obtain I(s + 1)Qα,β(s + 1) mod p = 0. Suppose,

towards a contradiction, that I(s+ 1) ≡ 0 mod p. Then, s+1 mod p is an exponent at zero

of H(α,β, p) and since jp + ei < s + 1 < jp + ei+1, we have ei < s + 1 − jp < ei+1. So,

0 6 s + 1 − jp < p and therefore, s+ 1 − jp ∈ Eα,β,p. Hence, there is m ∈ {0, . . . , k} such

that em = s + 1 − jp. Then, ei < em < ei+1. Now, we know that if i < m then ei+1 6 em
and if m < i then em < ei. This is a clear contradiction of the fact that ei < em < ei+1.

Thus, I(s+ 1) mod p 6= 0. Then, it follows that Qα,β(s+ 1) mod p = 0. Therefore, Pj,ei (z)

is the zero polynomial.

�

Proof of Step III. — From Step I, we know that Pj,ei and P0,ei are solutions of H(α,β, p).

Thus, the polynomial Pj,ei(z) −
Qα,β(jp+ei)
Qα,β(ei)

mod p · zjpP0,ei(z) is a solution of H(α,β, p).

Suppose, to derive a contradiction, that this polynomial is not zero. Then, from Lemma 8.6

it follows that the differential operator H(α,β, p) has an exponent at zero in the set {(ei +

1) mod p, . . . , (ei+1 − 1) mod p} because

Pj,ei(z)−
Qα,β(jp+ ei)

Qα,β(ei)
mod p · zjpP0,ei (z)

=

ei+1−1
∑

s=ei+1

(

Qα,β(jp+ s)−
Qα,β(jp+ ei)Qα,β(s)

Qα,β(ei)
mod p

)

zjp+s.

Therefore, there exits em ∈ Eα,β,p ∩ {ei + 1, . . . , ei+1 − 1}. If i < m then ei+1 6 em and if

m < i then em < ei. This leads to the contradiction that em ∈ {ei + 1, . . . , ei+1 − 1}.

Consequently, the polynomial Pj,ei (z)−
Qα,β(jp+ei)
Qα,β(ei)

mod p · zjpP0,ei(z) is the zero poly-

nomial.
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�

Now, we are in a position to finish the proof of the lemma. Let us write Sα,β,p =

{0, r1, . . . , rt}. It is clear that

f(z) mod p =
∑

j>0

(

k
∑

i=0

Pj,ei(z)

)

.

From Step II we deduce that if ei ∈ Eα,β,p \ Sα,β,p then, for all integers j > 0, Pj,ei(z) is

the zero polynomial. Then, we have

f(z) mod p =
∑

j>0

Pj,0(z) +
∑

j>0

Pj,r1(z) + · · ·+
∑

j>0

Pj,rt(z).

From Step III we conclude that if ri ∈ Sα,β,p then, for all integers j > 0,

Pj,ri(z) = Qα,β(jp+ ri) mod p · zjpPi(z),

where Pi(z) =
∑ej−1

s=ri

Qα,β(s)
Qα,β(ri)

zs with ej−1 = ri.

Therefore,
∑

j>0

Pj,ri(z) =
∑

j>0

(Qα,β(jp+ ri) mod p · zjpPi(z))

= Pi(z)
∑

j>0

(Qα,β(jp+ ri) mod p · zjp)

= Pi(z)Λri(f)
p.

Consequently, we have

f(z) ≡
∑

r∈Sα,β,p

Pr(z)Λr(f)
p mod p with Pr(z) =

r′−1
∑

s=r

Qα,β(s)

Qα,β(r)
zs.

�

8.4. Auxiliary result II

With the aim of carrying out the proof of Lemma 8.1, we need one more auxiliary result.

Lemma 8.7. — Let p be a primer number, let r be in {0, 1, . . . , p − 1} and let α =

(α1, . . . , αn) and β = (β1, . . . , βn−1, 1) be in (Z(p) \Z60)
n. Consider the following elements:

θ =

∏

s∈Cα,r

(αs)r

∏

s∈Cβ,r

(βs)r
, τ =

∏

s∈Pα,r







r−1
∏

t=0
(αs + t)

t6=pDp(αs)−αs







∏

s∈Pβ,r







r−1
∏

t=0
(βs + t)

t6=pDp(βs)−βs







, and λj =

∏

s∈Pα,r

(Dp(αs) + j)

∏

s∈Pβ,r

(Dp(βs) + j)
,
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with j ∈ Z>0. Suppose that Dp(α), Dp(β) belong to (Z∗
(p))

n and that vp(Qα,β(r)) = 0. Then:

(1) vp(λ0) = vp(θ) = vp(τ) = 0,

(2) #Pα,r = #Pβ,r and Qα,β(r) = λ0τθ,

(3) for every integer j > 0, Qα,β(jp+ r) = QDp(α),Dp(β),p(j)λjν, where ν ∈ Z∗
(p) and

ν mod p = (τ mod p)(θ mod p),

(4) if for every integer j > 0, vp(Qα,β(j)) > 0, then, for every j > 0, we have

vp(QDp(α),Dp(β)(j)λj) > 0 and

vp







∏

s∈Cα,r

Dp(αs)j
∏

s∈Pα,r

(Dp(αs) + 1)j

∏

s∈Cβ,r

Dp(βs)j
∏

s∈Pβ,r

(Dp(βs) + 1)j






> 0,

(5) if for every integer j > 0, vp(Qα,β(j)) > 0, then, for every integer j > 0,

Qα,β(jp+ r) mod p =







∏

s∈Cα,r

Dp(αs)j
∏

s∈Pα,r

(Dp(αs) + 1)j

∏

s∈Cβ,r

Dp(βs)j
∏

s∈Pβ,r

(Dp(βs) + 1)j
mod p






(Qα,β(r) mod p).

Proof. — We first suppose that r = 0. Then Pα,r = ∅ = Pβ,r. So, τ = 1 and, for all

j ∈ Z>0, λj = 1. Also, it is clear that θ = 1. Therefore, (1) and (2) are satisfied and (3), (4),

and (5) follows immediately from Lemma 8.3. We now suppose that r > 0.

(1)

• We prove that vp(τ) = 0. If s ∈ Pα,r then the p-adic valuation of

r−1
∏

t=0

(αs + t)

t6=pDp(αs)−αs

is zero because k = pDp(αs) − αs is the unique element in {0, 1, . . . , p − 1} such that

αs + k ∈ pZ(p) and, by assumption, 0 < r < p. Similarly, if s ∈ Pβ,r then the p-adic

valuation of
r−1
∏

t=0

(βs + t)

t6=pDp(βs)−βs

is zero. Therefore, vp(τ) = 0.

• We prove that vp(θ) = 0. It is clear that if s ∈ Cα,r then the p-adic valuation of (αs)r
is zero. Likewise, if s ∈ Cβ,r then the p-adic valuation of (βs)r is zero. Thus, the p-adic

valuation of θ is zero.

• Finally, vp(λ0) = 0 because by assumption, Dp(α), Dp(β) belong to (Z∗
(p))

n.

(2). It is clear that Qα,β(r) = p#Pα,r−#Pβ,rλ0τθ. From (1), we know that vp(τ) =

vp(λ0) = vp(θ) = 0 and by asumption, vp(Qα,β(r)) = 0. Thus, vp(p
#Pα,r−#Pβ,r ) = 0.

Whence, #Pα,r = #Pβ,r. So, Qα,β(r) = λ0τθ.
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(3). Let j be a nonnegative integer. The following equality is straightforward

Qα,β(jp+ r) = Qα,β(jp)Qα+jp,β+jp(r),

where

Qα+jp,β+jp(r) =
(α1 + jp)r · · · (αn + jp)r
(β1 + jp)r · · · (βn + jp)r

.

Clearly, we also have

Qα+jp,β+jp(r) =

∏

s∈Pα,r
(αs + jp)r

∏

s∈Cα,r
(αs + jp)r

∏

s∈Pβ,r
(βs + jp)r

∏

s∈Cβ,r
(βs + jp)r

.

By (2), we have #Pα,r = #Pβ,r and thus,

Qα+jp,β+jp(r) = λj · ξ, where ξ =

∏

s∈Pα,r







r−1
∏

t=0
(αs + jp+ t)

t6=pDp(αs)−αs







∏

s∈Cα,r

(αs + jp)r

∏

s∈Pβ,r







r−1
∏

t=0

(βs + jp+ t)

t6=pDp(βs)−βs







∏

s∈Cβ,r

(βs + jp)r

.

By Lemma 8.3, we know that Qα,β(jp) = QDp(α),Dp(β)(j)ω, where ω ∈ Z∗
(p) and ω ≡

1 mod p. Whence,

Qα,β(jp+ r) = QDp(α),Dp(β)(j) · ω · λj · ξ.

We put ν = ωξ. We now prove that ν ∈ Z∗
(p) and that ν mod p = (τ mod p)(θ mod p). Since

r < p, it is clear that

r−1
∏

t=0
t6=pDp(αs)−αs

(αs + jp+ t) mod p ≡
r−1
∏

t=0
t6=pDp(αs)−αs

(αs + t) mod p 6= 0 (8.9)

and that
r−1
∏

t=0
t6=pDp(βs)−βs

(βs + jp+ t) mod p ≡
r−1
∏

t=0
t6=pDp(βs)−βs

(βs + t) mod p 6= 0. (8.10)

So, it follows from Equations (8.9) and (8.10) that

∏

s∈Pα,r









r−1
∏

t=0
t6=pDp(αs)−αs

(αs + jp+ t)









/

∏

s∈Pβ,r









r−1
∏

t=0
t6=pDp(βs)−βs

(βs + jp+ t)









≡ τ mod p.

Furthermore, it is not hard to see that, s ∈ Pα,r if and only if (αs + jp)r ∈ pZ(p) and

that, s ∈ Pβ,r if and only if (βs + jp)r ∈ pZ(p). For this reason, the p-adic valuation of
∏

s∈Cα,r

(αs + jp)r and
∏

s∈Cβ,r

(βs + jp)r is zero. So

∏

s∈Cα,r

(αs + jp)r

/

∏

s∈Cβ,r

(βs + jp)r ≡ θ mod p.
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Consequently, ξ ∈ Z∗
(p) and ξ mod p = (τ mod p)(θ mod p). Finally, we know that ω ∈

Z∗
(p) and that ω mod p = 1. So, ν ∈ Z∗

(p) and ν mod p = (τ mod p)(θ mod p).

(4). Let j > 1 be an integer. From (3), we have Qα,β(jp + r) = QDp(α),Dp(β),p(j)λjν,

where ν ∈ Z∗
(p). So vp(Qα,β(jp + r)) = vp(QDp(α),Dp(β),p(j)λj). But, by assumption, we

know that vp(Qα,β(jp+ r)) > 0. Whence, vp(QDp(α),Dp(β),p(j)λj) > 0.

Now, it is clear that

λ0







∏

s∈Cα,r

Dp(αs)j
∏

s∈Pα,r

(Dp(αs) + 1)j

∏

s∈Cβ,r

Dp(βs)j
∏

s∈Pβ,r

(Dp(βs) + 1)j






= QDp(α),Dp(β)(j)λj . (8.11)

By (1), we know that vp(λ0) = 0. So,

vp







∏

s∈Cα,r

Dp(αs)j
∏

s∈Pα,r

(Dp(αs) + 1)j

∏

s∈Cβ,r

Dp(βs)j
∏

s∈Pβ,r

(Dp(βs) + 1)j






= vp(QDp(α),Dp(β),p(j)λj) > 0.

(5). Let j > 1 be an integer. From (3) and (4) we get

Qα,β(jp+ r) mod p = (QDp(α),Dp(β),p(j)λj mod p)(τ mod p)(θ mod p).

So, from Equation (8.11), we get

Qα,β(jp+ r) mod p =






∏

s∈Cα,r

Dp(αs)j
∏

s∈Pα,r

(Dp(αs) + 1)j

∏

s∈Cβ,r

Dp(βs)j
∏

s∈Pβ,r

(Dp(βs) + 1)j
mod p






(λ0 mod p)(τ mod p)(θ mod p).

From (2), we conclude that Qα,β(r) mod p = (λ0 mod p)(τ mod p)(θ mod p). Consequently,

Qα,β(jp+ r) mod p =







∏

s∈Cα,r

Dp(αs)j
∏

s∈Pα,r

(Dp(αs) + 1)j

∏

s∈Cβ,r

Dp(βs)j
∏

s∈Pβ,r

(Dp(βs) + 1)j
mod p






(Qα,β(r) mod p).

�

8.5. Proof of Lemma 8.1

Let us write Eα,β,p = {e0, e1, . . . , ek}, where ei < ei+1 for all i ∈ {0, . . . , k} and e0 = 0.

We set ek+1 = p and we also write Sα,β,p = {0, r1, . . . , rt}. Recall that f(z) is the power

series
∑

j>0 Qα,β(j)z
j ∈ Z(p)[[z]]. By hypotheses, we know that α and β belong to Zn

(p). So,

by Lemma 8.2, we have

f(z) = P0(z)Λ0(f)
p + Pr1(z)Λr1(f)

p + · · ·+ Prt(z)Λrt(f)
p mod p,
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where, for all ri ∈ Sα,β,p, Pri(z) =
∑ej−1

s=ri

(

Qα,β(s)
Qα,β(ri)

mod p
)

zs with ej−1 = ri. By definition,

Λri(f) =
∑

j>0

Qα,β(jp+ ri)z
j.

Now, by assumption, we know that Dp(α), Dp(β) belong to (Z∗
(p))

n. Further, for all

integers j > 0, vp(Qα,β(j)) > 0 because f(z) ∈ Z(p)[[z]] and, by definition, vp(Qα,β(ri)) = 0

for all ri ∈ Sα,β,p. Therefore, by (4) of Lemma 8.7, we conclude that, for all ri ∈ Sα,β,p,

f1,ri(z) = nFn−1(α1,ri ,β1,ri ; z) =
∑

m>0







∏

s∈Cα,ri

Dp(αs)m
∏

s∈Pα,ri

(Dp(αs) + 1)m

∏

s∈Cβ,ri

Dp(βs)m
∏

s∈Pβ,ri

(Dp(βs) + 1)m






zm

belongs to 1 + zZ(p)[[z]]. Furthermore, we deduce from (5) of Lemma 8.7 that, for all i ∈

{0, . . . , t},

Λri(f) mod p = Qα,β(ri) mod p · f1,ri(z) mod p.

Therefore,

f(z) ≡ Q0(z)f
p
1,0 +Qr1f1,r1(z)

p + · · ·+Qrt(z)f1,rt(z)
p mod p,

where Qri(z) = Qα,β(ri)Pri(z).

�

9. Constructing the polynomial Pp(Y )

In this section we show how to obtain the polynomial Pp(Y ). Let α = (α1, . . . , αn),

β = (β1, . . . , βn−1, 1) be in (Q ∩ (0, 1])n and let p be a prime number such that p > 2dα,β

and f(z) := nFn−1(α,β; z) belongs to Z(p)[[z]] and let l be the order of p in (Z/dα,βZ)
∗. As

p > 2dα,β then α, β belong to (Z∗
(p))

n and, by Remark 3.4, (α,β) satisfies the Pp,l property.

Then, by Proposition 4.1, for every r ∈ S
D

l−1
p (α),Dl−1

p (β),p, fl,r ∈ 1 + zZ(p)[[z]] and

fl,r ≡
∑

j∈S
D

l−1
p (α),D

l−1
p (β),p

Qr,j(z)f
pl

l,j mod p, (9.1)

where, for every j ∈ S
D

l−1
p (α),Dl−1

p (β),p, Qi,j(z) belongs to Z(p)[z] and has degree less than

pl. By following the proof of Theorem 3.2, the polynomial Pp(Y ) results from applying

Proposition 4.2 to the system (9.1). Thus Pp(Y ) is obtained by subsequent elimination of

the series fpl

l,j for j ∈ S
D

l−1
p (α),Dl−1

p (β),p \ {0}
(5) . It follows from the proof of Proposition 4.2

that this subsequent elimination is explicit once the polynomials Qr,j are known. Lemma 9.1

gives a formula for each polynomial Qr,j . This formula is given recursively and is constructed

from the polynomials given by the conclusion of Lemma 8.1. In order to state the lemma,

we introduce the following polynomials. Let r be in S
D

l−1
p (α),Dl−1

p (β),p and let us consider

the vectors αl,r = ω = (ω1, . . . , ωn) and βl,r = η = (η1, . . . , ηn).
(6) . For every j ∈ Sω,η,p,

(5) Remember that, for every integer a > 1, 0 ∈ S
D

a−1
p (α),Da−1

p (β),p
. Note that fl,0 = f.

(6) For every integer a > 1 and r ∈ {0, . . . , p − 1}, the definition of the vectors αa,r, βa,r was given at
the beginning of Section 4.
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we set

Tr,j(z) =

j′−1
∑

s=j

(Qω,η(s) mod p)zs,

where j′ is defined as follows. If j 6= maxEω,η,p then j′ is the element in Eω,η,p such that

(j, j′) ∩ Eω,η,p = ∅ or otherwise, j′ = p.

Let k be in {2, . . . , l}. For every j ∈ S
D

k−1
p (ω),Dk−1

p (η),p and b ∈ S
D

k−2
p (ω),Dk−2

p (η),p , we

set

T
(k−1,b)
r,j =

j′−1
∑

s=τ(j)

(Qωk−1,b,ηk−1,b
(s) mod p)zs,

where τ : S
D

k−1
p (ω),Dk−1

p (η),p → Sωk−1,b,ηk−1,b,p is the function given by Lemma 6.1 and j′

is defined as follows. If τ(j) 6= maxEωk−1,b,ηk−1,b,p then j′ is the element in Eωk−1,b,ηk−1,b,p

such that (τ(j), j′) ∩ Eωk−1,b,ηk−1,b,p = ∅ or otherwise j′ = p.

We are now ready to state Lemma 9.1.

Lemma 9.1. — Let the assumptions be as in Proposition 4.1. If l > 2 then, for every

r, j ∈ S
D

l−1
p (α),Dl−1

p (β),p,

Qr,j =






∑

jl−1∈S
D

l−2
p (ω),D

l−2
p (η),p

· · ·
∑

j1∈Sω,η,p

Tr,j1(T
(1,j1)
r,j2

)p · · · (T
(l−2,jl−2)
r,jl−1

)p
l−2






(T

(l−1,jl−1)
r,j )p

l−1

.

If l = 1 then, for every r, j ∈ Sα,β,p,

Qr,j = Tr,τ(j),

where τ : Sα,β → Sω,η,p is the bijective map given by A) of Lemma 6.1.

Proof. — Let r be in S
D

l−1
p (α),Dl−1

p (β),p. Let F be the hypergeometric series with parame-

ters αl,r = ω = (ω1, . . . , ωn) and βl,r = η = (η1, . . . , ηn). Then F = fl,r. For every 0 6 a < l

and j ∈ SDa
p(ω),Da

p(η),p
, we put Fa+1,j = nFn−1(ωa+1,j ,ηa+1,j; z). That is,

Fa+1,j =
∑

m>0









∏

s∈CDa
p(ω),j

Da+1
p (ωs)m

∏

s∈PDa
p(ω),j

(Da+1
p (ωs) + 1)m

∏

s∈CDa
p(η),j

Da+1
p (ηs)m

∏

s∈PDa
p(η),j

(Da+1
p (ηs) + 1)m









zm.

As (α,β) satisfies the Pp,l property then, by (2) of Remark 6.5, (ω,η) satisfies the Pp,l

property and l is the order of p in (Z/dω,ηZ)
∗. Thus, by Lemma 6.2, Fa+1,j ∈ 1 + zZ(p)[[z]]

for all 0 6 a < l and j ∈ SDa
p(ω),Da

p(η),p
.

We first prove by induction on k ∈ {1, . . . , l} that

F =
∑

j∈S
D

k−1
p (ω),D

k−1
p (η),p

Q
(k−1)
r,j F pk

k,j , (9.2)
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where

Q
(k−1)
r,j =

∑

jk−1∈S
D

k−2
p (ω),D

k−2
p (η),p

· · ·
∑

j1∈Sω,η,p

Tr,j1(T
(1,j1)
r,j2

)p · · · (T
(k−1,jk−1)
r,j )p

k−1

For k = 1, according to Lemma 8.1, we have

F =
∑

j∈Sω,η,p

Tr,j(z)F
p
1,j .

We now suppose that for some k ∈ {1, . . . l − 1} Equality (9.2) holds. We are going to see

that Equation 9.2 also holds for k + 1. Let j be in S
D

k−1
p (ω),Dk−1

p (η),p. By definition, Fk,j

is the hypergeometric series nFn−1(ωk,j ,ηk,j ; z). Further, we know that (ω,η) satisfies the

Pp,l property and thus, by Remark 6.4, (ωk,j ,ηk,j) satisfies the Pp,l′ property, where l′ is

the order p in (Z/dωk,j ,ηk,j
Z)∗. So, by applying Lemma 8.1 to Fk,j , we get

Fk,j =
∑

γ∈Sωk,j ,ηk,j

QγF
p
γ ,

where

Fγ =
∑

m>0







∏

s∈Cωk,j ,γ

Dp(ωs,k,j)m
∏

s∈Pωk,j ,γ

(Dp(ωs,k,j) + 1)m

∏

s∈Cηk,j ,γ

Dp(ηs,k,j)m
∏

s∈Pηk,j ,γ

(Dp(ηs,k,j) + 1)m






zm, Qγ =

γ′−1
∑

s=γ

Qωk,j ,ηk,j
(s)zs

and γ′ is defined as follows. If γ 6= maxEωk,j ,ηk,j
then γ′ is the element in Eωk,j ,ηk,j

such

that (γ, γ′) ∩Eωk,j ,ηk,j
= ∅ or otherwise, γ′ = p.

We now prove that Fγ = Fk+1,σ(γ), where σ : Sωk,j ,ηk,j ,p → SDk
p(ω),Dk

p(η),p
is the func-

tion given by Lemma 6.1(7) . For this purpose, we first prove that, for all s ∈ {1, . . . , n},

Dp(ωs,k,j) = Dk+1
p (ωs). By definition ωs,k,j = Dk

p(ωs) if s ∈ C
D

k−1
p (ω),j or ωs,k,j = Dk

p(ωs)+1

if s ∈ P
D

k−1
p (ω),j . It is clear that in the first case Dp(ωs,k,j) = Dk+1

p (ωs). Suppose now that

ωs,k,j = Dk
p(ωs) + 1. Again, by definition ωs = αs,l,i and thus ωs = αs if s ∈ C

D
l−1
p (α),i

or ωs = αs + 1 if s ∈ P
D

l−1
p (α),i. By assumption, αs ∈ Z∗

(p) and thus, by (1) of Re-

mark 6.3, Dp(ωs) = Dp(αs). In addition, for all integers 1 6 r 6 l, Dr
p(ωs) ∈ Z∗

(p) given

that Dp(ωs) = Dp(αs) and (α,β) satisfies the Pp,l property. Hence, according to (1) of

Remark 6.3 again, Dp(ωs,k,j) = Dp(D
k
p(ωs) + 1) = Dk+1

p (ωs). In a similar way we show

that, for all s ∈ {1, . . . , n}, Dp(ηs,k,j) = Dk+1
p (ηs). Now, by (ii) of Lemma 6.1, we have

Cωk,j ,γ = CDk
p(ω),σ(γ) and Pωk,j ,γ = PDk

p(ω),σ(γ). Again, by (ii) of Lemma 6.1, we have

Cηk,j ,γ = CDk
p(η),σ(γ)

and Pηk,j ,γ = PDk
p(η),σ(γ)

. Consequently, Fγ = Fk+1,σ(γ). Finally, it is

clear that Qγ = T
(k,j)
r,σ(γ) because τ(σ(γ) = γ. Therefore,

Fk,j =
∑

i∈S
Dk

p(ω),Dk
p(η),p

T
(k,j)
r,i F p

k+1,i.

(7) Note that we can apply Lemma 6.1 to (ω,η) because (ω,η) satisfies the Pp,l property.
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Thus, from induction hypothesis and the previous equality, we obtain

F =

∑

j∈S
Dk

p(ω),Dk
p (η),p







∑

jk∈S
D

k−1
p (ω),D

k−1
p (η),p

· · ·
∑

j1∈Sω,η,p

Tr,j1(T
(1,j1)
r,j2

)p · · · (T
(k,jk)
r,j )p

k






F pk+1

k+1,j ,

which shows that Equation 9.2 is true for k + 1.

So, by induction we conclude that Equation (9.2) holds for all 1 6 k 6 l.

Suppose that l > 2. We will show that, for every j ∈ S
D

l−1
p (ω),Dl−1

p (η),p, Fl,j = fl,j . By

(1) of Remark 6.5, we have Dl−1
p (ω) = Dl−1

p (α) and Dl−1
p (η) = Dl−1

p (β). Thus, C
D

l−1
p (ω),j =

C
D

l−1
p (α),j , PD

l−1
p (ω),j = P

D
l−1
p (α),j, CDl−1

p (η),j = C
D

l−1
p (β),j, and P

D
l−1
p (η),j = P

D
l−1
p (β),j. Fur-

thermore, we also have S
D

l−1
p (ω),Dl−1

p (η),p = S
D

l−1
p (α),Dl−1

p (β),p. By (1) of Remark 6.5 again,

we have Dl
p(ω) = Dl

p(α) and Dl
p(η) = Dl

p(β). As pl ≡ 1 mod dα,β and, by assumption, α,

β ∈ (Z∗
(p))

n then Lemma 2.1 implies that Dl
p(α) = α and Dl

p(β) = β. So, Dl
p(ω) = α and

Dl
p(η) = β. Therefore, for every j ∈ S

D
l−1
p (ω),Dl−1

p (η),p, Fl,j = fl,j . Consequently, it follows

from Equation (9.2) that

F =
∑

j∈S
D

l−1
p (α),D

l−1
p (β),p

Qr,j(z)f
pl

l,j mod p,

where

Qr,j =






∑

jl−1∈S
D

l−2
p (ω),D

l−2
p (η),p

· · ·
∑

j1∈Sω,η,p

Tr,j1(T
(1,j1)
r,j2

)p · · · (T
(l−2,jl−2)
r,jl−1

)p
l−2






(T

(l−1,jl−1)
r,j )p

l−1

.

This completes the case l > 2 because F = fl,r.

Suppose now that l = 1. As p ≡ 1 mod dα,β and, by assumption, α, β ∈ (Z∗
(p))

n then

Lemma 2.1 implies that, Dp(α) = α and Dp(β) = β. By assumption again, (α,β) satisfies

the Pp,1 property. Then, by Lemma 6.1, we have σ : Sα1,r ,β1,l,p → Sα,β,p. But definition,

α1,r = ω and β1,r = η. So, σ : Sω,η,p → Sα,β,p. We are going to see that, for all j ∈ Sω,η,p,

F1,j = f1,σ(j). By B) of Lemma 6.1, we get Cω,j = Cα,σ(j), Pω,j = Pα,σ(j), Cη,j = Cβ,σ(j),

and Pη,j = Cα,σ(j). By (1) of Remark 6.5, we have Dp(ω) = Dp(α) and Dp(η) = Dp(β). But

we know that Dp(α) = α and Dp(β) = β. So Dp(ω) = α and Dp(η) = β. Consequently,

for all j ∈ Sω,η,p, F1,j = f1,σ(j). Since σ is a bijective map, we deduce from Equation (9.2)

that

F =
∑

j∈Sα,β,p

Qr,j(z)f
p
1,j,

where Qr,j = Tr,τ(j) with τ the inverse of σ. This completes the case l = 1 because F =

f1,r. �

As an application of Lemma 9.1, we will give a formula for each rational function ap-

pearing in Equations (2.1) and (2.2).
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Theorem 9.2. — Let α = (α1, . . . , αn), β = (β1, . . . , βn−1, 1) be in (Q ∩ (0, 1])n and

let p be a prime number such that p > 2dα,β and f(z) := nFn−1(α,β; z) belongs to Z(p)[[z]].

Suppose that #Sα,β,p = 2. We write Sα,β,p = {0, r}, Eα,β,p = {e0, e1, . . . , ek} with e0 = 0

and ei < ei+1 for all i ∈ {0, . . . , k}, Eα1,r ,β1,r,p = {e′0, e
′
1, . . . , e

′
m} with e′0 = 0 and e′i < e′i+1

for all i ∈ {0, . . . ,m}. Let ek+1 and e′m+1 be the prime number p. We put r = es−1 and

τ(r) = e′h−1. If p ≡ 1 mod dα,β then

f(z) ≡ Q1(z)f(z)
p +Q2(z)f

p2

mod p,

where

Q1(z) = P0 +
T p
1

P p−1
1

and Q2(z) = P1T
p
0 −

T p
1P

p
0

P p−1
1

,

with

P0(z) =

e1−1
∑

j=0

Qα,β(j)z
j, P1(z) =

es−1
∑

j=r1

Qα,β(j)z
j,

and

T0(z) =

e′1−1
∑

j=0

Qα1,r ,β1,r(j)z
j, T1(z) =

e′h−1
∑

j=τ(r1)

Qα1,r,β1,r (j)z
jzj.

Proof. — It is clear that 1 is the order of p in (Z/dα,βZ)
∗. It follows from Remark 3.4,

that (α,β) satisfies de Pp,1 property because p > 2dα,β. Further, α, β belong to (Z∗
(p))

n

because p > 2dα,β and α, β belong to (0, 1]n. Note that f is the hypergeometric series f1,0
because Lemma 2.1 implies Dp(α) = α and Dp(β) = β. Then, by Lemma 9.1, we get

f(z) ≡ P0(z)f(z)
p + P1(z)f1,1(z)

p mod p, (9.3)

f1,1(z) ≡ T0(z)f(z)
p + T1(z)f1,1(z)

p mod p, (9.4)

where

f1,1(z) =
∑

m>0







∏

s∈Cα,r

Dp(αs)m
∏

s∈Pα,r

(Dp(αs) + 1)m

∏

s∈Cβ,r

Dp(βs)m
∏

s∈Pβ,r

(Dp(βs) + 1)m






zm ∈ 1 + zZ(p)[[z]].

From Equations (9.3) and (9.4), we get

f =

(

P0 +
T p
1

P p−1
1

)

fp +

(

P1T
p
0 −

T p
1P

p
0

P p−1
1

)

fp2

mod p.

�

As a corollary of Theorem 9.2 we have

Corollary 9.3. — Let f(z) := 2F1(α,β; z) with α = (13 ,
1
2 ) and β = ( 5

12 , 1), and let p

be a prime number such that p = 1 + 12k and p > 24. Then, f(z) ∈ Z(p)[[z]] and

f ≡

(

P0 +
T p
1

P p−1
1

)

fp +

(

P1T
p
0 −

T p
1P

p
0

P p−1
1

)

fp
2

mod p,
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where

P0(z) =

5k
∑

j=0

(1/3)j(1/2)j
(5/12)j(1)j

zj , P1 =

p−1
∑

j=1+5k

(1/3)j(1/2)j
(5/12)j(1)j

zj

and

T0(z) =

5k−1
∑

j=0

(1/3 + 1)j(1/2)j
(5/12 + 1)j(1)j

zj, T1(z) =

p−1
∑

j=5k

(1/3 + 1)j(1/2)j
(5/12 + 1)j(1)j

zj .

Proof. — Note that Eα,β,p = {0, 1+5k} and we have proved in Example 2.3 that Sα,β,p =

{0, 1+5k}. From the calculations made in Example 2.3 it follows that α1,1+5k = (1/3+1, 1)

and β1,1+5k = (5/12 + 1, 1). Thus Eα1,1+5k,β1,1+5k
= {0, 5k} and τ(1 + 5k) = 5k, where

τ : SDp(α),Dp(β),p → Sα1,1+5k,β1,1+5k,p is the function given by Lemma 6.1. Since Dp(α) = α

and Dp(β) = β, SDp(α),Dp(β),p = {0, 1 + 5k}. Thus, from Theorem 9.2, we get

f ≡

(

P0 +
T p
1

P p−1
1

)

fp +

(

P1T
p
0 −

T p
1P

p
0

P p−1
1

)

fp
2

mod p.

�

In the next theorem we give an explicit formula for each rational function appearing in

Equation (2.2).

Theorem 9.4. — Let g(z) = 3F2(α,β; z) with α = (19 ,
4
9 ,

5
9 ) and β = (13 , 1, 1), and let

p be a prime number such that p = 8 + 9kp and p > 18. Then, g(z) ∈ Z(p)[[z]] and

g ≡

(

P0,0P
p
1,0 + P0,0P

p
1,1

(

R1,0

P0,0

)p2)

gp
2

mod p,

where

P0,0(z) =

5+6kp
∑

s=0

(1/9)s(4/9)s(5/9)s
(1/3)s(1)2s

zs, P1,0 =

2+3kp
∑

s=0

(8/9)s(5/9)s(4/9)s
(2/3)s(1)2s

zs

and

P1,1 =

p−1
∑

s=3+3kp

(8/9)s(5/9)s(4/9)s
(2/3)s(1)2s

zs, R1,0(z) =

4+6kp
∑

s=0

(1/9 + 1)s(4/9)s(5/9)s
(1/3 + 1)s(1)2s

zs.

Proof. — From Example 2.4 we know that EDp(α),Dp(β) = SDp(α),Dp(β),p = {0, 3 + 3k}.

Furthermore, it is clear that 2 is the order of p in (Z/9Z)∗ and, according to Remark 3.4,

(α,β) satisfies the Pp,2 property because p > 18. Hence, by Lemma 9.1, we get

g(z) ≡ P0,0P
p
1,0g

p2

+ P0,0P
p
1,1g

p2

1,1 mod p, (9.5)

g1,1(z) ≡ R1,0P
p
1,0g

p2

+R1,0P
p
1,1g

p2

1,1 mod p, (9.6)

where g1,1 is the hypergeometric series 3F2(ω,η; z) with ω = ((1/9) + 1, 4/9, 5/9) and

η = ((1/3) + 1, 1, 1). Multiplying Equation (9.5) by R1,0 and Equation (9.6) by P0,0 and

subtracting the equations obtained we deduce that

R1,0g ≡ P0,0g1,1 mod p.
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So g1,1 ≡ R1,0

P0,0
g mod p. By replacing this last equality into (9.5) we obtain

g ≡

(

P0,0P
p
1,0 + P0,0P

p
1,1

(

R1,0

P0,0

)p2)

gp
2

mod p.

�
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